Symbolic Analysis of C Binaries

A Thesis
Presented to
The Established Interdisciplinary Committee for Mathematics and Computer

Science
Reed College

In Partial Fulfillment
of the Requirements for the Degree
Bachelor of Arts

Thomas Ulmer

May 2024

Approved for the Committee
(Mathematics and Computer Science)

Dylan McNamee David Meyer

Acknowledgments

— Thank you to Langston Barrett at Galois for very patiently answering my many
questions about Crucible.

— Thank you to my advisors Dylan and David for their edits and suggestions, this
thesis would be incomprehensible without them.

— Thank you to my friends for listening to my ramblings about Haskell even if
they don’t understand it.

— Thank you to my family for their advice and support on the thesis process, even
if it all sounds like Greek to them.

— Thank you to Ozymandias Juarez for reminding me that standards come from
within. Who would do this if not 17

Table of Contents

Introduction 1
0.1 Layout of this Document 3
Chapter 1: Prerequisites 5
1.1 Computation Model oL)
1.1.1 Undefined Behavior 6

1.1.2 Register Unit o 7

1.1.3 Arithmetic Unit 7

1.1.4 Memory Unit 7

1.1.5 State Machineo 9

1.1.6 Examples 14

1.2 Assembly 16
1.3 Imperative Languages oo 17
1.4 Functional Languages 18
1.5 Categories 20
Chapter 2: P-Code 23
2.1 Technical Details 24
2.1.1 Address Spaces and VarNodes 24

2.1.2 Imnstructions 25

22 Pitfalls 26
2.2.1 High and Low P-Code 26

2.2.2 Specification 28

2.3 Extracting P-Codeo 28
2.4 Example Translation 28
Chapter 3: Symbolic Analysis 31
3.1 Atoms, Composition, and Straightline Computations 32
3.1.1 Eliminating Mutability 32

3.1.2 Atoms 33

3.1.3 Composition of Atoms 34

3.1.4 Straightline Computations and Side Effects 35

3.2 Control Flow 36
3.2.1 Conditionals and Subroutines 37

3.2.2 Attempting Iteration 38

Chapter 4: Our Work 39

4.1 The Lay of the Land 40
4.2 What to Connect 40
4.3 The Artifact 41
4.3.1 Function Arguments, Data Shape, and Types 42

4.3.2 Control Flow 43

4.3.3 Creating Crucible CFGs 44

4.3.4 Reconstructing CFGs L. 46

4.3.5 Block Arguments vs SSA 50

4.3.6 Memory Issues 53

4.3.7 Final Artifact 54
Chapter 5: Type Theory 55
5.1 Simply Typed Lambda Calculus 55
5.2 Lambda Cube 57
5.2.1 Universal Qualification 58

5.2.2 Polymorphismo oo o8

5.2.3 Type Constructors 58

5.2.4 Dependent Types 59

5.2.5 Systems of the Lambda Cube 60

5.3 Types and Proofs 61
Chapter 6: Haskell 63
6.1 Typesin Haskell 64
6.1.1 Typesasa Category 65

6.2 Pure Functional Programming 68
6.2.1 Why Monads Matter 68

6.3 Dependently Typed Haskell 69
6.3.1 Singleton Types 70
Conclusions 73
Appendices 75
Appendix A: RISC-V Reference 77
A.1 Concrete Example Architecture 7
A1l Layout 78

A.1.2 Instruction Background, ... 78

A.1.3 Integer Computational Instructions 80

A.1.4 Control Transfer Instructions 81

A.1.5 Load and Store Instructions 82

A.1.6 Memory Ordering, Environment Calls, Breakpoints, and Hints 82

A.2 Concrete RISC-V Assembly Examples 82

Works Cited 85

Abstract

Within the field of static analysis, symbolic analysis is a powerful tool for verfying the
behavior of computer programs. The work presented here extends an existing library
for symbolic analysis to operate on binary programs in addition to the structure-rich
source code or intermediate representation it already supports. This addition brings
symbolic analysis into scope as a possible tool for reverse engineering binaries, as
well as confirming expected behavior between a model and a binary or source code
and a binary. The code of this thesis is novel in that it brings P-Code into direct
communication with this symbolic ecosystem, allowing for testing of the ecosystem
itself via differential testing as well the more typical uses such as compiler verification.
In addition, it brings new symbolic analysis to new architectures in a uniform way
through P-Code rather than being supported individually as is the case for those
currently supported.

Introduction

“I don’t see much sense in that,” said Rabbit.

“No,” said Pooh humbly, “there isn’t. But there was
going to be when I began it. It’s just that something
happened to it on the way.”

A. A. Milne

As what we demand of computers has grown, the size and complexity of programs
has also dramatically increased. In general a modern programmer’s code is judged
on correctness, efficiency, and readability. All three metrics are important, but it is
generally agreed that they are to be prioritized in the above order. However even with
the correctness of program top of mind, as programs grow past what a single person
can write or what a single person can have in their head at one time, it grows harder
to ensure correctness in all cases. Readability can be generally improved by following
a consistent style, careful naming, and thorough commenting. Efficiency is difficult,
but there are well known techniques and, importantly, there are metrics with which
one can experiment. Correctness is harder to ensure in general, as it is not a property
of the code per se, as is the case with efficiency. It can’t be easily reduced to a metric.
This is because a program’s correctness is a measure of distance between what the
code does, and what it is intended to do. The former is a mechanical expansion of
the code according to the rules that govern the coding language and machine. The
latter however, is not so easily expressed formally.

A program that has unintended behavior is still a functional program. It simply
calculates something other than what the programmer expects. Often that alternate
calculation can seem nonsensical when viewed through the lens of the expected calcu-
lation. This poses a problem. Naturally we want our code to do what we intend it to.
The question then is how can we guard ourselves, as programmers, from unintended
behavior.

Traditionally, the solution has been testing. If one knows what the program is
designed to do, then one can run the program on specified inputs, and ensure that the
outputs and behavior match what is expected. The simplicity of this method, and the
length of time that it has been the dominant method, have lead to very streamlined
methods of testing. For instance, many programming languages allow the programmer
to include a suite of tests in the source code so that when they compile, a potentially
very large set of tests is run automatically and the programmer is informed of their
output with the emphasis placed on if and which tests failed. However even for

2 Introduction

trivially simple programs, these tests cannot be exhaustive. A program that takes
a 32 bit number and adds one before returning the sum, for instance, requires 4.2
billion cases. The speed of modern computers could accomplish that in a second.
However the scaling in not in our favor. For each such input, one must consider all
combinations of possible inputs, which will scale exponentially. Clearly, exhaustive
concrete testing is a fool’s errand.

This comparison is not completely fair. Most programs have internal structure
designed by the programmer. The most fundamental kind of structure is repetition.
A program that takes two numbers, squares them both, and returns both likely uses
the same mechanism twice. So then the programmer or the tester could make the
judgment that so long as the first number is correct in all cases, we don’t need to
test the second. This judgment, informed by looking at the source code may very
well be reasonable. However we soon run into the same difficulties. When are these
judgments safe to make? It turns out that knowing that a piece of code is safe not to
test is really the same problem as knowing that a piece of code is correct in the first
place. This higher level version of the issue at hand is often easier, but has the same
challenges of scale when programs get complex.

Complexity-reducing techniques exist: one can test parts of the program inde-
pendently or take other simplifying actions, but those techniques are not powerful
enough to work in all cases. The best one can do is consider only programs written
within some self-imposed constraints. However productive work is not done solely
within these bounds, and one needs to work outside of them at times. It would be
good if we could feel safe while doing so.

So far the approach we have discussed is tantamount to bringing the conceptual
model of the program down to the written version (the source code). We specialize
the model to a specific case, or small band of cases, and we check that the two
agree. However, what about the other direction? Can we lift the written concrete
version to a higher level of abstraction, and do our comparison there? The answer,
unsurprisingly, is sometimes.

Static analysis is the general term for the collection of problems comparing writ-
ten code and mental models in the direction from code to model. The lifting problem
just described is called model synthesis. We can imaging defining a language of very
precise meanings, and writing our conceptual idea in that language. A very natural
language exists: mathematics. The central conceit of mathematics is that the base
on which it is built is simple enough to be checked for soundness, and that we agree
on it. Then new math can be build atop the old, and it is as trusted as that which
it is build on and of. Philosophy of math aside, if we take mathematical notation
as a concrete language we trust, and we write down what we want in math, then
we are halfway there. We have two written versions of what is supposedly the same
idea, the same computation. The problem is that they are in different languages. To
translate a program that can be run to a set of mathematical statements that encode
its effects is the purpose of static analysis. Better yet, it turns out we can often do
that mechanically.

0.1. Layout of this Document 3

0.1 Layout of this Document

Here we give an overview of this thesis, as the division and order of chapters requires
some explanation.

The first chapter contains explanations of several conceptions of computation that
will underpin the remainder of the thesis. They are presented in the first chapter in
some specificity as they will be assumed in all the chapters after.

After laying out the underlying ideas, next is a chapter that details P-Code, the
representation of programs that we take as input. This description is more surface
level, as the exact details of each piece are not critical. Instead the goal is to introduce
P-Code and place it in the context of representations of computer programs, partic-
ularly in order to highlight the ways in which it differs from the models presented in
the Prerequisites chapter, as those differences must be addressed by the code artifact
of this thesis.

Following that, a chapter about symbolic analysis at a high level. This chapter
explores some of the goals and difficulties that result from the motivations mentioned
above. The implementation details of the problems are not explored, but a simplified
version of symbolic analysis is presented in parts over the course of the chapter to
motivate the ideas and reveal the obstacles that result.

After the goal and the high level idea is presented in the symbolic analysis chapter,
the next chapter goes into more depth about the actual code artifact of this thesis. A
number of the details of the symbolic analysis are not handled explicitly and instead
are left to the library that provides many of the components and tools that we use.
However a number of problems appear from the differences between P-Code and
the other models presented. This chapter details some of them and their respective
solutions.

After the chapter about the code artifact, the reader has a complete idea of what
this thesis set out to do, and to some extent how it was achieved. However the
technical work of the thesis was concentrated not on what the code does, designing
algorithms and the like, but instead on the details of how to make each small step
function. There is a tremendous amount of code complexity introduced by the library
that provides much of the symbolic analysis toolkit we want to use. In order to use
this library, a great deal of esoteric theory and paradigms needed to be employed. The
following chapter, giving an account of the basics of type theory in the context of the
lambda calculus, lays the groundwork for the most interesting aspects of programming
in these paradigms.

The final chapter presents some of the technical considerations of programming
in this context. In particular, some features of the language that require a change
of mindset and the specialized tools required by the symbolic analysis library. These
specialized tools are presented in relation to the account presented in the type theory
chapter, as much of the difficulty in implementation that stems from the ways in which
the language differs from the standard formulation presented in the prior chapter.

The following diagram illustrates how our work fits in existing technologies and
the three models of computation presented in the next chapter.

Introduction

Computer as a machine
that follows instructions

Decompilation Compilation

Computer as a machine

that executes procedures Our work

Static Analysis

Computer as a machine
that computes functions

Figure 1: Overview of Related Technologies

Chapter 1

Prerequisites

What’s reality? I don’t know. When my bird was
looking at my computer monitor I thought “That bird
has no idea what he’s looking at.” And yet what does
the bird do? Does he panic? No, he can’t really panic,
he just does the best he can. Is he able to live in a
world where he’s so ignorant? Well, he doesn’t really
have a choice. The bird is okay even though he
doesn’t understand the world. You're that bird
looking at the monitor, and you’re thinking to
yourself, I can figure this out. Maybe you have some
bird ideas. Maybe that’s the best you can do.

Terry Davis

This chapter contains the background information we deem necessary to under-
stand the mechanics and the motivation to this thesis. Particularly it lays out the
model of computation that underpins the reasoning in this thesis for the lay reader.
After establishing a general understanding of what a computer is, at the level we
care about, this chapter contains three sections that detail the three most relevant
ways that programmers think about computers and go about programming them: as
a machine that follows instructions, as a machine that follows procedures, and as a
machine that calculates functions. Again this treatment is focused on the conceptual
issues and will avoid getting bogged down in the exact specifics of how these views
differ and are implemented in reality.

1.1 Computation Model

What is a computer, and how does one instruct it to do something? Those are the
questions this chapter sets out to answer. This section exists to answer the first one.
Here we give a definition of a model of computation. A model of computation
defines the parts of a computer, how they interact, and what basic actions happen
within and between them. A complete model has a comprehensive set of rules such

6 Chapter 1. Prerequisites

Register File

1

State Machine J————1 Arithmetic Unit

Memory

Figure 1.1: Computational Model

that there is no state or action that is not modeled. However we will see that there is
some use in under-specifying a computer, and leaving space for undefined behavior.
Not only does it allow for a simpler presentation that will be more intuitive to a lay
reader, but this under-specification is extremely common in the real world.

The model of computation presented here is a combination of a Von Neumann
machine, the standard informal RAM model, and a dash of the shared model of the
C family of languages.

Our computer model consists of four parts. They are the arithmetic unit, the
memory unit, the register unit, and the state machine. One can assume that these
components are all interconnected, and not worry about the exact details of how
they communicate. Each of these components will be presented in turn, and their
combination will be explained afterwards. Before the description can begin however,
we must explain undefined behavior.

1.1.1 Undefined Behavior

When we say that some state or action of the computer resulting in undefined
behavior, we mean just that. The model does not specify what occurs. This can be
slightly unintuitive, but an action resulting in undefined behavior could do anything.
Canonical examples could be performing some sensible default action (producing
zero for a calculated value perhaps) bringing the execution of the computer to a halt
(optionally with some sort of external sign that something has gone wrong), or even
causing the physical device to catch fire or explode. The key insight is that anything
could happen, and the same thing doesn’t have to happen every time, even if the rest
of the system is identical. Naturally undefined behavior is a bad mix with expecting
the computer to reliably perform meaningful work. As such, most programs strive to

1.1. Computation Model 7

avoid it, however it remains a core part of many models of computation, including
the one presented here.

1.1.2 Register Unit

The register unit, also called the register file, is responsible for storing data for short
periods of time. The register file contains some fixed, small number of entries, called
registers, which can hold some small fixed quantity of data. Each register has the
same number of bits, and thus the same capacity for storing information. The registers
are numbered from zero to the appropriate number. The exact number is irrelevant
here, but there are a fixed number for each machine.

The register unit overall supports two operations. The first is a read. A read
returns the binary data contained in a register. In combination with other units,
reads are used to make data available (as a copy) to other units. So to summarize, a
read with an indicated register leaves the contents of all the registers the same, but
makes the contents of the indicated register available to the rest of the system.

The second operation is the reverse. A write updates the contents of an indicated
register with some data supplied by the rest of the system. And following read on an
effected register of a write will produce the new data rather than the contents before
the write. Again the other registers are not affected.

Reading a register before writing it produces undefined behavior. The register
must be initialized with some known value via a write before it is safe to access.

With this the first sub-system is realized. The register unit lets the computer save
and retrieve data. The next question is what can the computer do with that data?

1.1.3 Arithmetic Unit

The arithmetic unit is responsible for performing computations as humans would
recognize it. It contains some fixed set of operations. Provided with an operation
and the correct number of pieces of input data (generally two), it produces a new
piece of data according to the operation. Common operations include elementary
operations on integers (addition, subtraction, multiplication, and division), along
with binary operations such as and, or, exclusive or (xor), not, and shifts to the
left and right (shl, shr). Some combinations of inputs and operations may produce
undefined behavior. A canonical example could be attempting to divide by zero.

1.1.4 Memory Unit

The memory unit is very similar to the register unit. However its internal arrange-
ment, strengths and limitations are different. The memory unit supports two opera-
tions analogous to the register unit’s read and write. They are load and store.

A memory load is a read from memory. It takes an address and (often implicitly)
a length, and copies the binary data of that length starting at that address, making
it available to the rest of the system. A memory store is the reverse, taking a piece
of data of some length and an address and saving the data at the given address for

8 Chapter 1. Prerequisites

future accesses. The same relationship between sequential reads and writes exists
between loads and stores. Again loading before storing at the same address produces
undefined behavior.

There is an initial point of nuance that separates memory from registers. In the
register file, registers are disjoint. One can either access some register or the next,
but not part of a register or an interval that takes parts of two registers. Memory
on the other hand is a contiguous sequence of addresses. So if a load at address a
for some length [might produce some string of bits byb; . .. b;_1, the load with the
same address but half the length would produce byb; . . . bya—1. A load with address
a+(1/2) and length [/2 would produce b;/2b;/241 - .. bi—1. There are a number of small
details that need to be worked out about the full generality of memory access and
updates, but we will elide that here for brevity. This is just to give a sense of one
way in which memory is more flexible than registers. The other way in which they
differ leads us to the final unit. A read or write to a register requires the register in
question to be indicated in the operation. For any individual register unit operation,
that indicator value is fixed, and doesn’t change during the course of the execution of
a program. A memory load or store does not have this limitation. For instance, the
address of a load could be obtained from a register. This means that as the register
changes value over the course of the execution of a program, the location that the
data is copied from will also change. This is not possible with registers, one cannot
select the index of the effected register with another register, or any other changing
value in the system.

The register file has some fixed small number of registers (often 64 or so). When
an instruction involves a register, it is indicated by it’s number. The total number
of registers is thus bounded by the number of bits in the instruction encoding. The
addressable range of computer is full set of memory addresses accessible. This is
often the number of addresses one can represent with a single register. Note that
many instruction encoding use 5 or 6 bits to indicate registers, but a register might
be 32 or 64 bits wide. Thus the number of addresses one can use in memory is many
orders of magnitude bigger than the number of registers.

The memory unit has an extremely large number of data locations, often thought
of as either finite but exceedingly large or infinite, depending on the analysis. These
data locations are arranged sequentially. The memory is a sequence of cells, each
associated with an address. We say that the natural numbers index memory, i.e.
each natural number is associated with a memory cell, and the cells are laid out in a
manner that captures the layout of the naturals. In short this means that adjacent
naturals should have adjacent cells. In most machines, cells can contain a single byte
(8 bits, or a number equal to or between —127 and 128).

Consider a store at address a of length [of some string of bits bgb; . .. b_1. A
following load at the same address and with the same length will produce the exact
same bit string as expected.

Now consider two stores (a, [, Z) and (a+1,1,%). A load with length [and address
a + (1/2) produces the second half of # and the first half of 7.

As with registers, a load that accesses cells that have not yet been stored to
produce undefined behavior. It is often convenient to think of cells and registers

1.1. Computation Model 9

of being of the same width. This is not true of modern computers, but it simplifies
analysis. The data effect diagrams at the end of this section assume that registers and
memory cells are the same size (one byte). This ensures we do not need to perform
any arithmetic on addresses and that our loads and stores only need to access a single
cell. In reality registers are generally four to eight times wider than memory cells.
For instance, a byte-addressable memory with 8-byte registers is common for modern
consumer devices. In this case if one wants to store the contents of two registers
in memory side by side, the first will occupy cells a through a + 7 and the second
a + 8 through a + 15. Note that storing into memory simply over-writes the previous
contents, it does not insert new cells or otherwise shift cells.

1.1.5 State Machine

The final unit can be considered the brain of the system. The state machine does sev-
eral things. The most important of which is direct the other units. The state machine
is exactly what it is called, a state and rules about how that state changes according
to a sequence of inputs. The sequence of inputs is divided into instructions. An
instruction is a small unit of computation. It is composed of some operation (arith-
metic, memory, register, generally a combination), and the details of how to connect
the units together. For example, an instruction that says to take the two registers a
and b and place their sum in register c. The state machine interprets this instruction,
and causes the register unit to perform a read of a and a read of b, routes those new
pieces of data to the inputs of the arithmetic unit, and indicates that the operation
to perform on them is addition. It then routes the output data from the arithmetic
unit back to the register unit, and produces a write operation on the register ¢ to
save the value.

10 Chapter 1. Prerequisites

a | v,
. . Up
Register File ¢ | v,

State Machine ¢ < SUM a,b

1

J————1 Arithmetic Unit

Memory
(a) Instruction Interpretation
a Vg
. . Up
Register File ¢ | output
State Machine Arithmetic Unit
{(F——
c <+ SUMa,b output = v, + vy
Memory

(b) Instruction Execution

The other common kind of instruction is a memory instruction. Our model is
limited to two kinds. The first performs a load from memory, placing the resulting
value in a register. The second does the reverse, reading from one register for a value,
and another for the address, and storing the value at the address in memory. These
memory instructions are required, as our model only allows arithmetic operations
to take in data from and output to registers. Other models exist that are more
permissive.

Consider a load into register e with the address of register a.

1.1. Computation Model

11

Register File

o QUL R

Va
Up
Ve
Ud
Ve

State Machine
e < LOAD a

M1

]7

Memory

(a) Instruction Interpretation

Arithmetic Unit

Register File

QO QU O o

Uq

output

State Machine
e < LOAD a

M1

]7

Arithmetic Unit

Memory
output = mem|v,]

(b) Instruction Execution

12 Chapter 1. Prerequisites

Register File

0 *
a 4
1 *
b *
2 *
17
3 *
d *
4 101
e *
5 *

Register File

0 %
a 4
1 *
b *
2 *
17
3 *
d *
| 4 — 101
e 101 — | ”
5

Figure 1.4: Data Effect of LOAD e, a

This load from memory demonstrates that data can be moved from memory to
registers. Note that the register used as the destination of the data and the register
that contains the address from which to pull data from are both selected by the
programmer. In the opposite direction there are stores to memory.

The next natural question is “where do instructions come from?” The answer is
that instructions are encoded as a sequence of bits, and are stored in memory. So
the state machine first performs a load from memory at some address stored in an
indicated register called the program counter, and then interprets the result as
an instruction and performs further operations from there. After the instruction has
been completed, the program counter is incremented to point to the next instruction
in memory sequentially, and the process is repeated. Thus if there is a sequence of
instructions stored in memory, the state machine will pass over them, executing them
one at a time in sequence.

The program refers to the sequence of instructions placed in memory that define
the operation of the computer. The program is considered to be the initial contents
of the memory unit, and execution of the program starts at the first instruction.

1.1. Computation Model 13

Note that for a fixed computer, the choice and layout of instructions in memory fully
describes the computation performed by the computer. At its core, programming
is the creation of a program, particularly one that describes some computation of
interest to humans.

Finally there are a few special instructions that manipulate this program counter.
They are collectively referred to as control flow instructions, as they indicate how
the execution passes through the program. In normal operation the state machine
executes every instruction in order. However it can be useful to have more flexibility.
The most basic kind of control flow is a branch (sometimes called a jump). A branch
contains an address, either directly or as an offset from the current program counter.
When the state machine executes a branch, the next instruction that is executed is the
one indicated by the branch, which may not be the instruction immediately following
the branch instruction that was just executed. In addition, there are conditional
branches, which check some true or false property (often if a register is zero), and
either execute the branch or continue to the following instruction depending on the
result of the condition. Finally there are indirect branches, which take an address in
a register and cause execution to begin at the memory located there. This can be
thought of as writing the provided address to the program counter register.

Consider a condition branch, which directs program flow to the address [y if reg-
ister a is zero, and [y otherwise.

14

Chapter 1. Prerequisites

State Machine CBRANCH a # 0,11, [,

(a) Instruction Interpretation

State Machine
CBRANCH a 7& 0, ll, 12

a | g
. . Up
Register File ¢l v,
[———1 Arithmetic Unit
Memory

Next Instruction:
if condition then [y, else [,

(b) Instruction Execution

1.1.6 Examples

a | v,
. . b Up
Register File ¢l v,
Arithmetic Unit ,
[F— . .
condition <+ v, =0
Memory

This section gives some examples of the data effects of a selection of instructions in
our computation model. These examples elide details of how operations function and
presents the way they change the state of the computer, namely be altering registers

Or memory.

1.1. Computation Model 15

Register File

b * 0 &
C 17 1 *
d *

Register File

b 59 0 *
c 17 1 *
d (S

Figure 1.6: Data Effect of ADD ¢, a, b

This register-only addition instruction is representative of all arithmetic and log-
ical operations. Said instructions perform some binary operation on the contents of
two registers and writes the contents to a register. The involved registers are selected
by the programmer. In the opposite direction of the memory load presented above,
there are memory stores.

16 Chapter 1. Prerequisites

Register File

Register File

0 *
a 4
1 *
b *
2 *
17
3 *
d 80
4 101
e *
5 *

0 *

a 4
1 *

b *
2 *

17
3 *

d 80
I 80

e *
5 %

Figure 1.7: Data Effect of STORE d, a

1.2 Assembly

Now we have a complete (if quite unrealistic) description of a computer, and we
know that to make the computer perform varied calculations, it suffices to change
the program that starts in memory. From this point on, the computer is thought to
be fixed, and the problem becomes how to produce a program (i.e. a sequence of
instructions) that describes the computation we desire as programmers.

Assembly language is generally considered the lowest form of human readable
code, and the most basic programming language. It is simply a nicer representation
of the sequence of bits for each instruction. Instead of forcing the programmer to
input each instruction is some impenetrable sequence of digits, the meaning of which
is unclear, assembly gives mnemonic names to each instruction, along with the other
elements that the programmer needs to describe a computation. This thesis is primar-
ily considered with the assembly language associated with the RISC-V specification.
The exact details are not critical, but a full reference of the relevant parts of the

1.3. Imperative Languages 17

RISC-V specification are found in the appendix A.

Take for instance our example of adding two registers and storing the result in a
third. In RISC-V’s assembly, we could write ADD x1, x2, x3, which computes the
sum of registers x2 and x3 and stores the result in x1. In addition, when it comes to
control flow, assembly allows the program to give names to locations in the program
called labels. So one can write j loopl where loopl is a label defined elsewhere in
the code. j is short for jump, which is what RISC-V calls unconditional branches.

Assembly is notable because is completely transparent. If one has assembly, they
can immediately produce the actual sequence of bits that a computer expects, and
vice versa. The human readable assembly is recoverable from the binary program that
the computer actually runs. Assembly thus represents a completely unambiguous
representation of the program. This is notable, as it is not true of most programming
languages. Almost all other languages exist to abstract away the tedious details of
the computer and allow the programmer to write code at a higher level of abstraction.
This includes automatically saving and restoring data in different contexts, named
data locations, more complex control flow, and data representing non-trivial encoding
of bits. It is important to note that these are all representable in assembly, in fact
most languages are translated (compiled) into assembly or directly into machine
code (the numeric encoding the computer expects). However they are tedious, error
prone, and complex to implement well.

1.3 Imperative Languages

The next kind of description of a computation is imperative languages. An imper-
ative language is a programming language of statements. Some body of code is
written according to the syntax of the language and is then compiled into a program
in machine code to be run. This thesis is focused on C as the imperative language of
choice, in part be cause it is widespread and influential. There are others however,
including other members of the C family such as C++, and separate languages like
Rust. Assembly is the most basic imperative language, in which each statement is a
single instruction.

A statement is a chunk of code that produces one or both of a result and side
effects. A side effect is some change to the total state of the program. It generally
takes the form of the change of some value stored at a known location in memory.
The result if it exists is some value that is produced or “returned” as the final step
of the computation of the statement.

Languages like C exist to simplify the process of writing a description of a com-
putation. These simplifications are numerous and varied, but include several key
improvements compared to writing assembly. The first is that the same C code can
be compiled to run on more than one kind of machine. So details such as how many
registers exist are no longer the problem of the programmer, and instead are known
and dealt with during the compilation process. Next are variables. Variables in C
are named locations to store data, abstracting away the differences between register
and memory along with representing complex data structures that may not fit in

18 Chapter 1. Prerequisites

a single register. Instead of managing the access to some data in a register or in
memory (including choosing if and when to move data) manually as in assembly, in
C a programmer can simply indicate that the input value to a computation should
be drawn from a particular variable, and leave those small details aside.

The most important difference when moving to C from assembly for our purposes
is that C makes explicit the structure of a program. The flow of a program in assembly
is simply some unstated relationship between labels, with some shared understanding
of the state of data at the transition. In C, a subroutine (a small computation that
is likely to be reused) has not only a name, but also an associated set of inputs and
outputs. The code that calls the subroutine to use its computed value only needs to
know on what the inputs, outputs, and side effects of the subroutine are, and is less
concerned with how the data gets there.

C also has types. A type is a complicated thing in general, but in C it simply
describes the layout and interpretation of some bits. Every value has a type, and
variables have a type. Types indicate and restrict what sort of operations are rea-
sonable on some piece of data. Much of the latter part of this thesis is devoted to
a deeper exploration of types. Inputs (arguments) and outputs of subroutines are
explicitly annotated with types.

What C and other imperative languages share with assembly is that they are
descriptions of the action of the computer. They are basically complicated shorthand
for a program in machine code, which the reader will recall is a complete description
of the actions taken by the computer to perform some computation. We will see
momentarily that this is only one of the ways to produce a program that performs a
desired calculation.

1.4 Functional Languages

Another common way to describe a desired computation is via a functional language.
Functional languages are a broader category of languages than imperative languages,
but what they generally share is that they are less concerned with the location,
representation, and source of data, and more concerned with describing the sequence
of functions that produce the final result. Languages like C describe when and where
to load and store from memory, how the execution of the program should progress,
and generally describe actions taken by the computer. Functional languages do not
describe loads and stores or explicit code flow in terms of sequential execution.

This thesis is concerned with the lambda calculus, the first functional language
(aside from mathematics itself perhaps) and Haskell. As such, the description given
here is meant to give a general impression of them specifically, at the cost of an
imperfect description of functional languages overall. The core idea of a functional
language like these two is that a description of the functions that produce the final
result of a computation is the same as a description of the computation itself. Haskell
is (generally) compiled into a runnable machine code program, while lambda calculus
is generally for theory crafting and is not traditionally run on real machines, though
it is possible to do so. In either case, the compilation or translation process makes all

N O U W N~

1.4. Functional Languages 19

the decisions about where data goes and when and how to call subroutines. The pro-
grammer simply needs to produce a description of the intended function computed by
the program in terms of smaller functions. The programmer defines smaller functions
(which often become the subroutines of the machine code program) which can be put
together into the complete function. The smallest functions are provided by the lan-
guage itself, and generally consisting of the basic operations on the fundamental data
types like integers and lists of values (the implementation of which on the computer
are left to the compiler).

Hopefully the reader has the impression that functional languages are more ab-
stract descriptions of a computation. The key difference is that a functional language
seeks to describe the function being computed, while imperative languages and as-
sembly describe the actions of the computer to compute said function.

Both functional languages and imperative languages replace the low level control
flow of jumps with more natural human constructions. Particularly of note are con-
ditionals. In machine code and imperative languages, a conditional controls which
parts of the code are executed. In a functional language, a conditional is a function of
three inputs, and the function produces the second argument if the first is true, and
the third otherwise. So for some fixed arguments a,b,c. if a,b,c is equivalent to b
if a is true, and ¢ otherwise. Iteration and function calling are more similar between
imperative and functional languages. Iteration takes some chunk of code and runs it
repeatedly, often until some condition is met. This is also expressible in a functional
style, as we will see. In an imperative language, calling a function (subroutine) causes
it to be run, and the result to be returned to the caller. In a functional language, the
concept of “running” code doesn’t really exist. Calling a function is simply applying
the function to its arguments. The function along with its arguments together rep-
resent a value of the return type of the function, as the computation to compute a
value and the value are equivalent in this functional setting. Regardless, special men-
tion should be made of recursion, a function calling itself. This is legal and useful.
In fact, it is natural to formulate iteration in terms of recursion in many functional
languages. Each iteration of a loop becomes one call of the recursive function, which
either returns some value to its caller or does some computation and calls itself again,
often with different arguments.

Listing 1.1: Recursive Haskell Implementing GCD algorithm

ged :: Integer — Integer —> Integer
ged a b
| b=0=a — Bottomed out, we have the answer
| b>a=ged ba — Ensure a > b for all steps by swapping args
| otherwise =
ged b r — With our assumptions, do one step and recurse

where 1 = a ‘rem‘ b — The remainder of dividing a by b

20 Chapter 1. Prerequisites

1.5 Categories

As functional languages are generally build out of relatively few and relatively simple
base constructs, their structure and power comes from their emergent properties. As
a result, functional languages are generally more succinctly representable in theory
and are thus the target of the majority of the theory of programming languages.
One mathematical structure that sees some use in this setting is a category. This
section gives a brief definition, limited to just the bits that are the most relevant. The
primary use case within this thesis is for describing aspects of Haskell’s type system,
which the second half of this thesis covers in more depth. This sections simply lays
out the definitions for those unfamiliar or in need of a refresher. This description is
based on Messick [2007].
A category C has three parts.

1. A collection of objects. These are the elements that we move between.

2. A collection of morphisms. A morphism is a way to turn one object into
another which respects whatever structure one might care about within the
objects. Frequently they are functions that have some additional properties.
Each morphism f has a domain (where it starts) and a codomain (where it
ends). It is frequently useful to talk about the set of morphism between two
objects. We write Hom¢(A, B) for the set of morphisms from A to B in C. We
also write f € C(A, B) which says that f a member of Hom¢ (A, B).

3. A composition law that tells us how to combine morphisms. For any two mor-
phism f € C(A, B), g € C(B,C), we have go f € C(A,C). This law also obeys

two axioms:

(a) Composition is associative, with h € C(C, D), (hog)o f =ho(go f) =
hogof.

(b) There are identity morphisms for each object. For all objects C' € C, there
is some 1 € C(C,C) such that 1o og =g and ho 1lg = h.

This can be thought of as putting the “arrows” of two functions tip to tail in
the order that makes sense. The two axioms simply say that one can insert
arrows that don’t go anywhere without changing the resulting arrow, and that
the order one combines three or more arrows doesn’t effect the result.

A canonical example of a category is the category of sets, Set. The objects
are all sets and the morphisms are functions between sets under standard function
composition.

We say some f € C(A, B) is an isomorphism if there exists some g € C(B, A)
such that fog = 1g and go f = 14. Namely g takes every object back to where it
started before f was applied and vice versa. If such such f, g exist, we call A and B
isomorphic. [somorphic objects are somewhat interchangeable in a category, as any
morphism involving one can become a morphism involving the other by applying the

1.5. Categories 21

f or g before or after as appropriate. Informally, one can always get from one to the
other.

A functor F is a map (read function) from one category C to another D. It
produces an object in D for each in C (though they may not be distinct) and a
morphism in D for each in C. Furthermore it is required to obey the following laws.

1. F(lg) =1 F(c)- This says that the identity on an element in C will become the
identity on the corresponding element in D.

2. If h =go fin C, then F(h) = F(g) o F(f). This says that it doesn’t matter
if one applies the functor and then composes or composes and then applies the
functor, they are equivalent. Equivalently, the diagram 1.8 commutes. That is,
all paths from A to v are equivalent.

gof
A A
Ja F F
Qo 15} y

F(g)o F(f)=F(go f)

Figure 1.8: Functor F' between C and D

The other categorical structure we are interested in are monads. This definition
is based on one by Mulry [1998]. Let C' be the category of sets. Fix some monoid M.
As a reminder a monoid is some set M together with a associative operation (written
as multiplication and thus generally lacking a symbol) and a identified element e € M
that is the identity for the operation. Thus for a,b,c € M we have

abc = (ab)c = a(bc)

EMm = m = 1me

as we would expect.
Let H be the endofunctor (functor from C to C') with H(A) = M x A. A monad
on C'is a triple of (H, u,n), the endofunctor and two natural transformations. One is

UA:A—>MXA
a— (e,a)

22 Chapter 1. Prerequisites

and the other is

pa: M x (MxA) —MxA
(m, (n,a)) — (mn,a)

Note that 1 produces a natural pair for any a € A by pairing it with the most
“inoffensive” element in M, namely the identity which will make no difference when
multiplied. Note that 74 takes an element of A to one of H(A). It is the simplest
way to “lift” an element of A. The understanding of u4 that is important to us is
that pa goes from H(H(A)) to H(A) in the way that is natural for M. Thus p is
morally a “flattening” operation of some kind.

Using 7 alone allows the full categorical structure of C' to be present in the richer
setting of the monad, as for any morphism in C, there is a new morphism given
by post-composing with 7, which adds no structure, but results in a morphism that
operates in the monadic space rather than the underlying one.

The critical thing for us to understand about monads is how to use pu. The
most useful feature of p for our purposes is that one can use it to define a kind of
composition. If one has two functions of the appropriate shape, f : A — M x B and
g : B — M x C then one can compose them in a natural fashion. We see we can
define

omey: (B—=MxC)x (A= MxB)—=(A—=MxC)
(9,f) = ulfar; (g0 fB))

Where f); is the the function A — M by applying f and taking the first element (in
M). Similarly fp is applying f and taking the second element (in B). Note that since
M is a monoid and o is natural function composition, this new enriched composition is
associative. We will see that this gives us a natural sequencing operation. If we have
some sequence of functions fi, fo,.. ., fn (each S;_; — M x S;) through a sequence
of sets S, then this composition operator gives us a function f : Sg — M x S, that
captures both the standard composition of f;s if one ignores the monoid element, and
also a trace of the monoid elements in the form of some monoid element that is the
multiplication of the monoid elements produced by each f; in order.

Thinking of and p as natural transformations 7 : id — H and p: H?> — H, we
also have that a monad obeys

pong =idy = po H,
popm=poHp
The exact details are not critical here, but these laws basically ensure what one
might expect, namely that packing and unpacking in any order shouldn’t change the
underlying value.

Formalism aside, monads allow one to add auxiliary associative structure to a
category. Categories are important for us because they are critical to Haskell, one
of our central programming languages of interest. The chapter on Haskell goes into
more detail about why categories are necessary, but in short they allow Haskell to
have a consistent and powerful type system while representing effects (notably input
and output) that are not naturally represented by standard types alone.

Chapter 2
P-Code

All problems in computer science can be solved by
another level of indirection.

David Wheeler

The previous chapter gives a model of computation. The model of computation
together with the precise details of how the addressable range, register number, reg-
ister size, and other details are selected and cemented together with an instruction
encoding for a given computer. These choices taken together form a Instruction
Set Architecture, or ISA. Naturally for any decision made during the ISA creation
process, there are other options, and often some other ISA that has made the other
choice. So while the choice of ISA is arbitrary, since for the most part it does not ef-
fect what a program can and cannot accomplish, it does make a significant difference
in terms of what some computation might look like at the instruction level.

Most programs are written in a high level language that allows a program to be
created without knowledge of any specific ISA, and in fact the same program can be
compiled for many ISAs. Thus tools that operate on source code have applicability
to many ISAs for free, since the semantics of the language hide all of those details.
However, debugging, some security tests, and other problems of correctness and trust
are often interested in programs at the instruction level. Tools in those areas are then
forced to specialize or be general over several ISAs.

One such tool is Ghidra Directorate [2023], a tool designed by the National Secu-
rity Agency and later open sourced. Ghidra is a tool that takes a compiled binary and
attempts to build a readable source code for it. An explanation of how this process
works is out of the scope of this thesis, but in general this process is called decom-
pilation. Decompilation is the task of creating (C) source code that compiles to the
given binary program. This process is challenging, complex, and immensely useful
for certain security applications, among other trust problems in Computer Science.
Another selling point of Ghidra is its near universal knowledge of [SAs. Naturally this
poses a problem for the developers of Ghidra, as the nature of decompilation makes
it incredibly dependent on choice of ISA. It would be a fool’s errand to attempt to
solve the difficult problem of decompilation for each ISA, particularly if one requires

24 Chapter 2. P-Code

that they produce similar looking source code.

P-Code is the solution Ghidra takes to this problem. P-Code is an extremely
general ISA that does not correspond to any piece of extant hardware. Its purpose
is to be simple and small enough to be easily analyzable, but flexible enough to
translate into from other [SAs. Ghidra contains two translation layers between the
initial loading of a binary file and the primary decompilation process. The first is to
convert the given ISA to Low P-Code. This step consists of, for each instruction in
the input [SA, converting it into one or more P-Code instructions, such that that they
perform the exact same actions as the original instruction. For simple instructions,
that may be a one to one conversion to the equivalent P-Code instruction (for instance
summing two registers and placing the output in another register), but for others it
may be far more involved. (Some complex ISAs, such as x86_64 might do a number
of things in one instruction, such as the return instruction that returns to the caller
indicated on the stack, and pops some number of other items off the stack.)

Once a program is converted to an equivalent program in P-Code, the second
translation level massages it from Low to High P-Code. High P-Code is almost
the same, but is further abstracted away from the hardware. It contains explicit
information about control flow and other higher-level program information.

2.1 Technical Details

This section contains a brief overview of the aspects of P-Code that differ from stan-
dard ISAs and are of interest to us based on the reference manual Agency [2019].

2.1.1 Address Spaces and VarNodes

One of the primary differences between ISAs is the question of which instructions
can touch memory, and which instructions are limited to operating on registers. For
instance, RISC-V only allows touching memory through explicit loads and stores,
but x86_64 allows some instructions, like integer arithmetic, to take one input from
memory directly. These decisions are borne from balancing speed and hardware
complexity, among other factors. P-Code is meant to be general over all I[SAs, so we
need some way to encode instructions that might touch memory more than once. We
could break such an instruction down into explicit loads and stores around a register-
only operation, like we might do in RISC-V, but that is inflexible and inefficient.
This is particularly true given that P-Code doesn’t have the constraint of having to
be supported directly in hardware.

Thus in the pursuit of generality, P-Code leans heavily on the concept of an
address space. An address space is a generalization of memory, an indexed sequence
of bytes. Note that this is not to be confused with the operating systems term address
space; here it is just an abstract sequence of bytes. For a single byte, its index is the
byte’s address, which is unique. An address space is composed of a name, a number
of bytes that it contains, and information about how to lay out values that are more
than a byte long (endianness).

2.1. Technical Details 25

Programs in P-Code generally have three main address spaces: The ram address
space, which corresponds to memory as the standard assembly programmer knows it,
the register address space, which generalizes the set of registers the ISA supports,
and a constant address space, which has constant values that might be used during
the P-Code translation, including constants encoded in the original instructions, like
the immediate offsets in RISC-V operations. There is also sometimes a temporary
address space, which can be useful in the translation, but doesn’t correspond to any
part of the original program. The register address space is of particular interest,
since it differs in arrangement from most ISAs. For instance, in RISC-V, registers are
disjoint locations that do not share any sequential relationship, other than the fact
that they are numbered. However, in P-Code, the second four byte register is simply
the next four byte sequence in the register address space after the first four bytes.
This is a strictly more general view of registers than that of RISC-V, but it allows for
a uniformity between memory and registers, and also matches some ISAs, in which a
large value is split and stored in two registers, often next to one another.

To talk about a location, memory or register, P-Code uses VarNodes. A VarN-
ode is simply an address space, an offset therein, and a length. This has a natural
interpretation in the case of the ram address space, as it is designed to mimic the way
memory normally works. In the case of a register, the VarNode simply indicates a
region of the register address space according to the mapping of registers to regions
of the register address space.

The other aspect worth mentioning is the length. For a normal ISA, there is
generally one primary granularity of data (four bytes in the case of the base RISC-
V-32 ISA), though they also generally support operations on smaller units (16 bit
integers for example). P-Code is even more flexible, by allowing each operation to
act on arbitrary lengths, depending on its input and output lengths.

2.1.2 Instructions

A brief aside should be taken to talk about instruction order in P-Code. In a normal
ISA, instructions are simply executed in program order, barring control flow altering
instructions like branches or jumps. However, there is a slight caveat with P-Code
instructions, arising from the fact that there can be more than one P-Code instruc-
tion in the translation of a single machine (input ISA) instruction. Thus P-Code
instruction sequencing abides by the following rule: The next P-Code instruction to
be executed is the next instruction in the translation of the current machine instruc-
tion, and if there are no more P-Code instructions in this machine instruction, then
the next sequential machine instruction is begun, starting with the first P-Code in-
struction in its translation. Thus straight line computations are as expected: each
machine instruction in order, and each sub-unit of translation in order.

The issue of branches and other non-linear control flow is handled similarly. A
P-Code branch can either branch within the scope of the current machine instruction,
called a P-Code-relative branch, or between machine instructions. In the latter case,
P-Code execution begins with the first P-Code instruction of the targeted machine
instruction’s translation. It is impossible to branch directly to a P-Code instruction

26 Chapter 2. P-Code

in another machine instruction that is not the first one.

All P-Code instructions use VarNodes for inputs and outputs, and are thus general
over registers, memory, and any other address space that might exist for a program
and piece of hardware. There will not be an exhaustive list of P-Code instructions, as
they are largely the same as any simple ISA, up to the flexibility from using VarNodes.

P-Code contains all the elementary integer operations of a standard ISA, along
with instructions to check for overflows and underflows associated with fixed preci-
sion addition and subtraction operations. Boolean logic operations, floating point
operations, and conversions between floating point and integer encodings are also
represented. Conditions of the sort found in the conditional branches of RISC-V are
represented as explicit operations that take integers or floating point values and pro-
duce a boolean value. Conditional branches take an extra boolean valued VarNode
to switch on, rather than having the condition be internal to the instruction. No
differentiation is made between branches and jumps, and no registers are saved or
manipulated during those operations. If one wants to save the jumped-from location
to the stack as in a subroutine call, it must be done explicitly before the jump occurs.
The branch operations simply alter the next instruction to be executed. P-Code sup-
ports both branches to constant locations (VarNodes with a constant address space)
and branches/jumps to a location indicated by a non-constant (often register) VarN-
ode. P-Code also calls these branches, though in some ISAs they would be called
jumps. P-Code only allows indirect branches like these between machine addresses,
while constant branches can be P-Code relative. Indirect branches are also not allowed
to change address spaces, while constant branches can. The exact details beyond this
short description will be included in later explanations if they become relevant.

2.2 Pitfalls

Unfortunately, while P-Code is accessible directly through Ghidra, and in theory
available to the public, it is not really part of the forefront of Ghidra’s open source
interface. This section briefly covers some of the difficulties and subtleties of working
with P-Code.

2.2.1 High and Low P-Code

An unintuitive aspect of P-Code is that the core P-Code documentation and Ghidra
implementation actually describe two languages. These languages are largely over-
lapping and lack canonical names, but we will be following several other academic
works and be referring to them as High P-Code and Low P-Code. Other names
for Low P-Code include Raw P-Code. Generally when unqualified, “P-Code” refers
to High P-Code, but this work is exclusively concerned with Low P-Code.

The first few steps that Ghidra takes on loading a binary illustrate the difference.
Initially the binary is read and the header meta-data is inspected. Once the target
ISA in question is determined, each target ISA instruction is converted to one or
more Low P-Code instructions. These Low P-Code instructions capture exactly and

2.2. Pitfalls 27

completely the effects of the target ISA instruction, including any CPU flags or side
effects, but do no analysis beyond that. Once all the instructions in the target binary
have been converted to Low P-Code, a number of transformations are applied to
the Low P-Code to produce High P-Code, which is used by the rest of the Ghidra
stack. There are two main transformations that are of interest to us. These are the
identifications of functions and the production of phi-nodes.

The former is straightforward: Ghidra identifies where in the instruction stream a
function seems to begin. Ghidra targets binaries produced by C and C-like languages,
so this process is mostly just a task of collecting the targets of target ISA instructions
intended for sub-routine calls (JALR and its ilk). In P-Code there are all merged into
a single CALL instruction that acts like a branch, and may be combined with other
Low P-Code instructions to perform things like saving the caller program counter like
many [SAs do.

Briefly, a phi-node occurs whenever a sequence of instructions is reachable from
more than one place. A contiguous sequence of instructions that is atomic with
respect to control flow is called a block. By that we mean that when executing the
program, either each instruction is executed in the block exactly once in order for
each time the block is reached, or the block is not reached. A block may only contain
control flow instructions as the final instruction (called the terminating instruction).

Consider a block that is reachable by exactly two blocks. The first predecessor
block writes 1 to x1. The second writes 2. If an operation in the current block wants
to use the value provided by the predecessor block, it would simply use x1. However
the reader will note that when concerned with the program in general, and not with
a specific execution of the program, it is not clear what the value of x1 is. It’s not 1
or 2, since its not immediately clear what the predecessor block is. However the value
is also not completely general, since at the start of the block it must be either 1 or 2,
and no other value. A phi-node encodes this constrained ambiguity. A phi-node is a
mapping from the set of possible prior predecessor blocks to the set of a values for a
specific data location (generally a register). We will not provide a formal definition for
phi-nodes, since we do not use them directly, and their exact formulation depends on
the context the are used in. In High P-Code, they represent registers who’s contents
change depending on the predecessor block, or any block between the current block
and its immediate dominator. High P-Code promises that any data locations that
can vary depending on control flow path are captured in a phi-node. The phi-node
encapsulates the information about the origin of the data, and the rest of the block
can simply use the data.

The creation of phi-nodes is of lesser interest. This is because we do not rely on
them in our work. The full discussion of why what is the cases is to follow 4.3.5. Phi-
nodes are mentioned here because they are relevant later in terms of understanding
static analysis. Typically phi-nodes are utilized in Singe Static Analysis 3.1.1, but
Ghidra uses them without the rest of the structure of SSA forms.

0 O Ui Wi =

W=

28 Chapter 2. P-Code

2.2.2 Specification

Another difficult aspect of working with P-Code is the ambiguity surrounding the
core pseudo-ISA. While there is a general specification in prose Agency [2019], P-
Code lacks a centralized formal specification. A formal specification allows people
working with P-Code (inside or outside Ghidra) to know with certainty what is and
is not legal or supported by P-Code.

Prior work outside of the Ghidra developer circle has included a formal specifica-
tion for High P-Code Naus et al. [2023]. That paper illustrates the importance of a
formal specification, since some small changes had to be made to the form of some
P-Code operations (namely the phi-node merges) to be consistently expressible. In
addition, the authors had to confirm several aspects of P-Code’s behavior through
experimentation.

2.3 Extracting P-Code

At present, Ghidra does not provide a natural way to extract P-Code from an analyzed
binary. While it is simple enough to view the P-Code representation of a region
of code inside the Ghidra application, it is not currently supported to export that
data for external use. To achieve this, we extended Ghidra with a plug-in that
writes each function to a file with Ghidra’s name for the function and the P-Code
associated with it in order. This plug-in is based on the existing plug-ins that do
similar things, notably niconaus [2022] that dumps High P-Code and an example
plug-in HackOvert [2023] that dumps Low P-Code for a single function. Our version
differs in that it dumps the P-Code for every function, and it dumps specifically
Low P-Code Ulmer [2023b]. The exact format of the dump is not important, but
mirrors the expected structure of our interpretation code, which produces verbose
but unambiguous representations.

2.4 Example Translation

Listing 2.1: Example C function

int main () {

register int i = 0;
while (1) {
anaE
return 0;
Listing 2.2: Abreviated Example C Translation

FUNCTION main
0x000101da, 0x0, COPY (” const” ,0xfffffffffffffffO0 ,0x8), (” unique”,0xe80,0x8)
0x000101da, Oxl, INT_ADD (”register”,0x2010,0x8), (” unique” ,0xe80,0x8), ("register” ,0x2010,0x8)

0x000101dc, 0x0, COPY (” const” ,0x8,0x8), (”unique” ,0x1600,0x8)

2.4. Example Translation 29

0x000101dc
0x000101dc
0x000101de
0x000101de
0x000101de
0x000101e0
0x000101e0
0x000101e2
0x000101e2
0x000101e4
0x000101e4
0x000101e4
0x000101e4
0x000101e8
0x000101e8
0x000101ec

Oox1,
0x2,
0x0,
0x1,
0x2,
0x0,
Ox1,
0x0,
Ox1,
0x0,
Ox1,
0x2,
0x3,
0x0,
0x1,
0x0,

INT_ADD (” unique” ,0x1600,0x8), (”register”,0x2010,0x8), (” unique”,0x16a80,0x8)
STORE (” const” ,0x1b1,0x8), (”unique” ,0x16a80,0x8), ("register” ,0x2008,0x8)
COPY (” const”,0x0,0x8), (”unique”,0x1600,0x8)

INT_ADD (” unique” ,0x1600,0x8), (”register”,0x2010,0x8), (” unique”,0x16a80,0x8)
STORE (” const” ,0x1b1,0x8), (”unique”,0x16a80,0x8), ("register” ,0x2040,0x8)
COPY (” const” ,0x10,0x8), (”unique”,0x1280,0x8)

INT_ADD (”register”,0x2010,0x8), (”unique”,0x1280,0x8), (”"register”,0x2040,0x8)
COPY (” const” ,0x0,0x8), (”unique” ,0xe80,0x8)

COPY (” unique” ,0xe80,0x8), ("register” ,0x2008,0x8)

COPY (” const”,0x1,0x8), (”unique” ,0x780,0x8)

INT_ADD (”register”,0x2008,0x8), (”unique”,0x780,0x8), (”unique” ,0xdc80,0x8)
SUBPIECE (” unique” ,0xdc80,0x8), (”const” ,0x0,0x4), (”unique” ,0xdd00,0x4)
INT_SEXT (” unique” ,0xdd00,0x4), (”"register” ,0x2078,0x8)

SUBPIECE (" register” ,0x2078,0x8), (”const”,0x0,0x4), (”unique” ,0xde80,0x4)
INT_SEXT (” unique” ,0xde80,0x4), ("register” ,0x2008,0x8)

BRANCH (”ram” ,0x101e4 ,0x8)

Chapter 3

Symbolic Analysis

The last bug isn’t fixed until the last user is dead.

Sidney Markowitz

Now that we have some idea of what a computer can do and how to represent a
program binary, we can return to our high level goal, namely checking the correctness
of a program against a model.

This chapter presents an account of static analysis, specifically symbolic anal-
ysis. In addition, it attempts to provide motivation for why symbolic analysis
might be desirable and some of the challenges of static analysis in general based
on Schwartzback and Dockins et al. [2016]. This account is greatly simplified and
intended primarily to motivate this project rather than to give a rigorous formulation
of the problem. A more formal account based on an encoding in lattices can be found
in Schwartzback.

A programmer is generally interested in computing some value according to some
inputs. Naturally they want their code to compute the output correctly, and further
correctly for all possible inputs. If one could convert the program to a mathematical
model that captures the computation exactly, then the programmer could confirm
that the program was implemented correctly. Symbolic analysis is the process of
building that model and attempting to answer related questions.

A critical distinction between a mathematical expression of a value in terms of
some inputs and a description of the computation that produces one such value given
inputs is the notion of concreteness. In mathematics, given some term a that is
known to be an integer, we can do all the same things on it that we could do on any
specific integer. In short, we can manipulate the symbol a and the symbol 5 in an
identical matter, because the operations such as addition are fundamentally abstract.
In this case, ISA level descriptions of computation act somewhat similarly. They can
manipulate a register xn in the same way that they do a literal value k, for instance a
5. However where this falls apart is the notion of mutability, or equivalently register
reuse.

Since each machine instruction only knows how to act on inputs that are registers
or literal values, if we wanted to represent a two step computation such as (a+5) X 2,

32 Chapter 3. Symbolic Analysis

then we must first place the intermediate value of a + 5 somewhere (i.e. a register),
and then use it. This is necessary, because the MUL instruction has no way to represent
a nested computation like a + 5. This alone is not a problem, as intermediate values
can simply be stashed in registers and passed as an input. If one has the intermediate
computation a + 5 in x2, then the MUL instruction can simply use x2 and 2 as its
operands, and all is well.

Unfortunately there are not an infinite number of registers, and so registers must
be reused. This poses an issue to our translation, as something like x1 < x1 + 1
is a perfectly valid step of computation, but is meaningless in the naive attempt to
translate into a mathematical expression.

In short we need to perform some transformations to our description of compu-
tation before we can lift it into a mathematical expression for the computed value in
terms of the inputs.

3.1 Atoms, Composition, and Straightline Com-
putations

Given a concrete program that computes some function, we want to create a mathe-
matical object, likely an expression in the inputs, that captures the semantic mean-
ing of the steps performed by program. By semantic meaning, we are speaking specif-
ically about the information captured in a known representation (ie. the computed
number instead of a description of the location and layout of some bits). We want our
resulting object to speak about numbers, rather than being a precise but unhelpful
description of bit manipulations. To that end, our translation process must account
for the conventions of representation. One difficulty of translating is that some ma-
nipulations are fundamental to the bit-representation but may not be fundamental
in the corresponding represented domain, e.g. the integers. We will see an example
in the next section.

The rest of this chapter will be concerned with the concepts of translating RISC-V
assembly into formal mathematical expressions. This process is similar to those for
other assembly variants and bears some resemblance to the equivalent process for a
higher level language. This formulation is original and inspired by several functional
languages including Lisp and Haskell along with the standard formulation of SSA
forms.

3.1.1 Eliminating Mutability

The first issue that arises is that computation in assembly is fundamentally about
manipulating some finite set of reusable registers. However, mathematical expressions
have no concept of location. A number simply exists, whether it is the final result or
an intermediate step. For example, a common program step is © = z + 1, which is
a natural operation for a machine with registers, but a nonsensical statement about
mathematical expressions.

The primary way this is handled is using a normalized representation called Static

3.1. Atoms, Composition, and Straightline Computations 33

Single Assignment. SSA form represents a computation in which each register can
be written to exactly once, each register must be defined (written to) before it can be
used, and there are arbitrarily many registers. SSA form in its modern incarnation is
the product of Cytron et al. Cytron et al. [1991], which along with its predecessors
presents how to convert into SSA form and some of the benefits.

Static Single Assignment makes the dependencies between intermediate values and
the data flow of the computation to be explicit. For RISC-V assembly specifically, the
translation process is primarily composed of splitting registers into versions, with each
assignment of the register becoming a new version, and each read from the register
becoming a read from the version most recently defined in program order. This is
similar to the mathematical convention of appending apostrophes to signify iterated
versions of a value. The original code might say x1 < x1 + 1, our SSA form might

be x15 + x1; + 1, and the mathematical version might look like x1” © o + 1, for
instance. The details of translating memory and control flow will be discussed in later
sections.

This largely mechanical transformation is already a large step forward. We now
have a intermediate representation (IR) that captures our interest in data flow
rather than data location. Data is immutable, but can be used to compute new pieces
of data.

3.1.2 Atoms

The most indivisible computations that a RISC-V machine can do are a single in-
struction, i.e. ADD or XOR. We recall that these operations can take either registers, R,
as inputs or immediate constant values, C. Thus we can characterize the fundamental
type of data being the disjoint union

DY rRuC

A single data atom is either a register or a constant. Then a very natural formulation
for a function atom is

FY {1 fDxD— R}
the set of binary functions on the domain of data atoms. Note that all R C D, so
this function is strictly contained in the domain of data atoms.

From these definitions it is fairly clear that the data manipulation instructions
of RISC-V are function atoms, and the registers and immediates are data atoms. A
dubious reader can justify to themselves that all of the data manipulation instruc-
tions presented in the RISC-V reference in the appendix A are all easily represented
mathematically given some knowledge of bit-level representation conventions.

Note that this is a strictly more general representation of the computations possi-
ble in a single instruction of RISC-V, since it would be an error to write instructions
that take two constants as input. However, since RISC-V is a strict subset, we can
convert into this IR, so long as we aren’t concerned with converting back. The mo-
tivation for this IR is to eliminate the difference between immediates and registers,

34 Chapter 3. Symbolic Analysis

since that is an aspect of data location which we don’t care about, and in SSA form
registers are also immutable, so the difference is largely arbitrary.

Thus with data atoms and function atoms, we can express a single instruction’s
worth of computation on a RISC-V machine in what we will call the FD-atom IR.
The next question is obvious: What about more than one?

3.1.3 Composition of Atoms
Consider the following RISC-V excerpt:

Listing 3.1: Multi-instruction computation

add x2, x1, 2 ; x2 <— x1 + 2
sub x4, x2, x3 ; x4 <— x2 — x3

In prose, this excerpt adds 2 to the contents of x1, stores the result in x2, subtracts
the contents of x3, and leaves the results in x4. Note that x2 contains an intermediate
value after this excerpt. Given that there is only one write per register involved here,
and assuming that x1 and x3 were defined prior to this excerpt, then no actions are
necessary to make this a SSA form.

In the IR we are constructing, we can express the first instruction as

X2+ x1+42
where 2 is a constant, and the second as
x4 < x2 — x3

However if we are concerned with the final value, and not the location or inter-
mediate computations, we might write instead

x4 <+ (x1+2) — x3

This composition of function atoms allows for a very intuitive representation for
computations that result in a single computed value. Furthermore, this formulation
captures the high level pattern of writing or generating assembly, namely the breaking
of large computations into increasingly simpler ones, until they can be represented
trivially i.e. in a single instruction.

Consider taking the determinant of a 2 by 2 matrix of integers. Anybody who has
studied linear algebra will you that for a matrix

a b
c d
the determinate is ad — bc. Now consider a plausible subroutine that does that

computation, taking inputs in a0-a3 and placing the result in a4. The reader can
assume that no registers are aliases of one another.

[\

3.1. Atoms, Composition, and Straightline Computations 35

Listing 3.2: 2 by 2 determinant

mul t0, a0, a3 ; t0 <— a0 x a3
mul t1, al, a2 ; tl <— al *x a2
sub a4, t0, tl1 ; a4 <— t0 — tl

Again we only care about the final value in a4. Our IR (with renaming to match)
gives us (ad) — (be), exactly the semantic calculation, stripped of the messy details of
which register the data resides in, and where the intermediate values came from.

3.1.4 Straightline Computations and Side Effects

This formulation alone, even without any further additions, is quite powerful in terms
of what RISC-V computations it can express. As presented so far, the FD-atom
representation and its associated translation process can express any RISC-V machine
computation that does not feature any control-flow operations. Computations that
do not require control flow are called straightline computations. And the FD IR
gives us a way to take a straightline computation and get an expression for the output
with symbolic names for the inputs.

One further generalization can be made without adjusting the process. So far our
translation efforts have been towards finding an expression representing a singular
output of a computation. However it is reasonable to ask about computations that
produce more than one output, or have side effects other than the primary output. An
example could be a subroutine that takes two numbers, divides the first by the second,
and returns the quotient as an output, and leaves the remainder in the location of the
first input. These side effects of a computation can be thought about in two ways.
The first is to think about them as secondary effects. In our determinant example 3.2,
the contents of t0 and t1 are changed, but they don’t contain the information we care
about, or at least not the complete information. The other method is to roll the side
effects into the final output. Again for the determinant, one could instead say that
the subroutine has the output of the tuple (ad — bc, ad, bc) in the locations a4, t0, t1.
In this view, while parts of the output may appear less than useful, the computation
has no side effects, because they are included explicitly as the output. While this is
not generally the mindset of a programmer using side effects, this method of framing
can be applied universally.

A related property of being side effect-free is for a function or subroutine to
be pure. A pure function is side effect-free and has output dependent solely on
the immediate arguments to the function. This is in contrast to a function that
might consult a data location that was not explicitly supplied at the call site, e.g.
a global variable in many programming languages. Pure functions have referential
transparency; replacing the call with the return value does not effect the computation.

To capture the side effects of a subroutine in the FD-atom IR, we can simply ask
for a FD expression for each data location that is written to during the course of the
subroutine. This is in essence the same as the tuple method. Often the resulting
expressions for the side effects may be subexpressions in the primary output, for
example the side effect on t0 is ab, which is a subexpression of the output in a4.

36 Chapter 3. Symbolic Analysis

The full generalization of the FD IR takes any straightline excerpt and produces
an expression for each register, each with a free variable for every register, regardless
of if it appears in the excerpt. Thus if 7" is the set of register states, where each
register takes a value from the same domain S, the full IR for an excerpt is a function
from a complete register state (tuple of length |R|), to a new register state.

f:SIRl 5 gIF

such that f(7) is the set of register states after the excerpt is run with initial register
values 7. A convenient shorthand notation is f;, which takes the initial complete set
of register states to the resulting state of register i: f;:S/l — S.

This full generalization is useful because it has the same shape as a mathematical
object regardless of the contents of the excerpt, and is still completely correct even if
one doesn’t know the location of the primary output of the excerpt.

3.2 Control Flow

We have given a nice framework for discussing straightline computations. The natural
next step is to attempt to model the ways in which straightline computations are
combined: conditionals, subroutines, iteration, and recursion.

Fundamentally, both recursion and iteration are concerned with repetition. It is
well known that recursion and iteration are equivalent, and we can convert one to
the other simply. However there are still distinctions to be made, namely between
three classes of repetition: fixed number iteration, primitive recursion, and general
repetition. Fixed number iteration is the simplest. It contains any repetition that
occurs a fixed number of times that is known at compile time. The same number
of loops or recursive subcalls will happen regardless of input. Note that this is not
fundamentally different, as fixed number iteration can be unrolled into a straightline
computation by simply duplicating the contents of the loop the appropriate number
of times.

Primitive recursion contains instances of repetition where the number of iterations
or the depth of the recursion are known before the first repetition begins. This term is
generally phrased in terms of recursion depth, but is equivalent to the most common
form of for loops in many programming languages. Note that these kinds of repetition
cannot be unrolled into a straightline computation, as the “length” of the straight
line is not known before the program is run. The core difference between this and the
first kind of repetition is that the number of iterations differs between inputs, but for
each input it is known before it begins.

Finally general repetition is the most broad category. It contains the natural
extension of the above, namely cyclic computations in which the number of repetitions
or cycles is not known before the process is begun. This can be conceptualized as
a while loop with a nontrivial condition (ie. one that can’t be converted into a
traditional for loop in terms of an indexing variable), or alternatively a flow chart
containing a cycle or loop.

—_

O © 00O U W

3.2. Control Flow 37

The third, most general version of iteration is behind the famous halting problem,
which in layman’s terms says that knowing if a program eventually completes is as
hard as running it. (And therefore may not finish in finite time, if the program
doesn’t halt.) This in turn means that even categorizing an instance of repetition as
expressible in which class is also undecidable in general. Though for many practical
examples, it is not hard.

Despite the impossibility result lurking in the background, one can attempt to
chip away at practical cases of representing effects of cyclic processes.

3.2.1 Conditionals and Subroutines

From this point on, assume that all functions detailing register effects take as argu-
ments and produce as output full register sets in the manner described above.

Consider a two segments of code that have some register effects E(7) and Ey(7).
Consider code that executes the first block if x1 is zero, and the second otherwise.
This is not a straightline computation, but a natural expression presents itself if we
allow ourselves piecewise functions in our symbolic representation. Then we can write
that the global effect of this combined conditional segment is

E\(r) ifx1=0

o 1

E(r) = { Ey(i) ifx1 40

While this may seem undeserving of mention, a subtle difference exists. The condi-
tional in the code directs the execution for a single run of the program. The condi-

tional in the expression above is a single expression that is true for all inputs.
Consider applying this to a absolute value example.

Listing 3.3: RISC-V Implementing Absolute Value

takes a integer in xl and produces its absolute value in x2. x0
always contains the value zero

abs:
blt x1, x0, negative # if x1 < z0, go to "megative”, else continue
mov x2, x1 # assign z2 = zl
j exit # go to 7exit”
negative:
mul x2, x1, —1 # assign x2 = x1 * —1
exit :
return

We see naturally that the expression we want is

b — 7 [x2 < x1] ifx1 >0
abs = 7[x2 + —x1] ifx1 <0

Where 7 [a <— b] means 7 with a replaced with b. While this is a simple example, note
that effects of high complexity affecting many registers could be placed in each arm
instead of these simple assignments.

A similarly natural solution exists for subroutine calls. Putting aside questions of
diverging programs, optimized tail calls, and other non-standard control flow between

38 Chapter 3. Symbolic Analysis

subroutines, if a code segment calls out to another code segment, then the majority
of the time it will return to the calling location. Under this model, if we have some
effect Es(7) for the subroutine’s changes to the registers, we can simply substitute
the call in the code for a symbolic statement that applies those effects. This requires
some careful handling that is out of the scope of this thesis, but in short it introduces
the question of evaluation order (which makes a difference).

One should note that the above strategy requires an expression for the callee
function to already exist. Thus it is unsuitable by itself for recursive functions (or
any cyclic call tree).

Now our representable languages are composed of straightline segments connected
by conditionals and subroutines, both of which can have arbitrarily nested contents,
subject to the rules of no iteration and no cycles.

3.2.2 Attempting Iteration

As detailed above, fixed number iteration presents no issue for symbolic represen-
tation. Unrolling converts loops of that variety into straightline computations with
equivalent effects. Not only is this process comparatively simple, it is well documented
and studied, as it is a common optimization technique.

Primitive recursion and its iterative counterpart are difficult to capture in full
generality, and are a core subject of research in static analysis. How to handle them
in general is out of the scope of this thesis, but much of the attempt is centered
around invariants. An invariant is a property about the data involved in a loop or
recursive call. Armed with the symbolic effects of the body of a loop, one can often
produce an invariant such that the property holds at the beginning of the loop and
after each iteration. This together with the variable of iteration (which contains how
many loops have been performed so far) can often produce a full symbolic effect for
the entire loop. The recursive version is similar and bears a striking similarity to
mathematical induction.

General iteration is difficult, but the general tactic is to fake it. Some large value
k is chosen, and the iterative or recursive code is transformed to run for at most &
iterations. If it would go beyond k, the analysis has failed. The code may still exit
before k iterations have occurred (or equivalently the remaining iterations have no
effect). After being transformed in this manner, the problem can now be solved with
the tools for primitive recursion. For a suitable choice of £ this is often good enough
Barrett [2021]. Note that the undecidability result states that it is impossible to have
a fully general version that terminates for all programs.

Chapter 4
Our Work

I met a traveller from an antique land,

Who said—“Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,

Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:

My name is Ozymandias, King of Kings;

Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay

Of that colossal Wreck, boundless and bare

The lone and level sands stretch far away.”

Percy Shelly

At this point, the reader has a fairly complete view of what the purpose of this
thesis is. The purpose of this chapter is to cover the interesting high level details of
how we went about achieving the goal of bringing symbolic analysis to binaries. After
this chapter, the reader will have a near complete view of what our code does. The
remaining chapters following this one detail some sources of small scale complexity
that are of particular interest.

This chapter presents an account of the state of the problem and where our work
fits in. In short, our work brings arbitrary binary programs from compiled C-like
languages into scope for symbolic analysis when lacking the original source code. In
simpler terms, extending the ability to ask “What does this program, or program
fragment, do mathematically?” to programs that have already been compiled.

40 Chapter 4. Our Work

4.1 The Lay of the Land

The most important player to introduce is the library Crucible. Crucible is a library
written in the programming language Haskell by a team at Galois Inc. The purpose of
Crucible is to provide a language of symbolic computation, and methods of converting
standard programming language variants into the symbolic language.

Given a program in Crucible’s representation, one can then perform symbolic
queries about the program via one of Crucible’s front-ends, or tools built on top of
Crucible. For instance, the symbolic simulator lets one provide some assumptions
about the input to a function, and expectations about the output, and have a confir-
mation that the final expectations are met for all valid inputs. These queries return
either a confirmation that the expectations hold under the assumptions (which repre-
sents a mathematical proof that the given implication between the inputs and outputs
of the function holds), or provides a concrete counter-example.

The natural question is how to produce the Crucible representation? The Crucible
library also includes a number of back-ends that can convert some real-world interme-
diate representations into the Crucible representation. Examples include converting
programs expressed in LLVM, Mir (the Rust compiler’s IR), Web Assembly, Go-lang,
and Java Virtual Machine.

In addition, formulating queries can be cumbersome, so front-ends exist to inte-
grate Crucible more naturally into the development process. One such front-end is
Crux, which wraps Crucible and presents itself as a library in the language of choice.
For instance, in Rust, Crux-mir allows one to express the assumptions and expecta-
tions around a function directly in the source code. This is intuitive, ensures that the
testing and the codebase remain in sync, and automates the process of performing
the symbolic tests in the same way that concrete testing schemes work in modern
languages.

The other important piece of software to talk about is Ghidra. Ghidra has already
been covered in the chapter on P-Code, but we mention it again here because is it
immediately relevant to our work to follow. A broad grasp of what Ghidra does and
what P-Code is all that is required of the reader.

4.2 What to Connect

The aim of this thesis is to perform symbolic analysis on binary programs. In pursuit
of that goal, we have taken the approach of building connective tissue between Ghidra
and Crucible. There are several plausible paths to do so, and each has its advantages
and disadvantages.

An initial direction of inquiry might be to simply disassemble a program with
Ghidra, and feed the C to Crucible. This would certainly be functional, and generally
fairly ergonomic, as it would allow Crucible queries to be phrased in terms of the C
names for data. However this is not the method we chose. The issues that arise from
this method are twofold. The first is that there are kinds of code that are hard to
represent understandably in C (even if they were originally C programs). One example

4.3. The Artifact 41

could be Linux kernel code. While one can certainly disassemble the resulting binaries
(most of the time), there are many tricks in the original source that may be obfuscated
by the disassembly process. An obfuscated but correct representation is often worse
than an inelegant but direct representation in these cases. The second is that Ghidra
is a extremely large and complicated program. We deemed it better to write a more
isolated and direct program, as the use case for symbolic analysis on binaries is not
completely overlapping with the reverse-engineering aims of Ghidra.

Instead, we chose to rely minimally on Ghidra. After Ghidra produces P-Code
for the binary, it is no longer required at all. We deem the conversation to P-Code a
light dependency on Ghidra, as it would be possible to implement one’s own ISA to
P-Code translation program for all of the ISAs under consideration if one didn’t want
to rely on Ghidra at all. The justification for using P-Code is that it is extremely
general, at it allows our program to be agnostic of initial ISA.

On the Crucible end, the natural access point is to write a P-Code back-end for
Crucible, which is exactly what we did. Thus upon exiting the back-end, Crucible
can act on its own representation as if it were a program sourced from any other

back-end.

4.3 The Artifact

Finally we have the shape of the primary code artifact of this thesis: a back-end of
the Crucible library to interpret P-Code input. Specifically a Haskell program that
depends on the core Crucible library and aligns with the P-Code dumping script
discussed above (2.3), providing an interface into Crucible for ingesting P-Code.

At first glance, this appears to a fairly straightforward task: simply gluing two
pieces of extant software together. However there are several challenges that arise
from the fact that the P-Code that is fed as input only vaguely resembles the other
back-ends’ respective input languages. Critically P-Code lacks all of the explicit
structure of the other IRs that Crucible accepts. As should be clear from the chapter
on symbolic analysis, the structure of the computation being analyzed is critical to
combining smaller units into larger, more useful symbolic statements.

Not only does P-Code not contain that information, even where the boundaries
between units of computation are is left unannotated. Other important bits of infor-
mation P-Code lacks include: the size and structure of any composite pieces of data,
the number of function arguments, and all information about types. These are rea-
sonable exclusions for an ISA, but the inputs that Crucible accepts via other backends
already are IRs, and not ISAs. The differences between the two will be detailed over
the course of this chapter. In short, since P-Code is a pseudo-ISA, it lacks the isola-
tion and abstraction of a something resembling a functional programming language,
a lambda calculus, or an abstract grammar, but it also lacks the explicit structural
information that a compiler IR like LLVM or Mir, such as control flow annotation.
Crucible’s internal language is a combination of both, but leans heavily towards the
former. As such, to interpret P-Code it must be presented as something similar to a
compiler IR. However, as stated, P-Code lacks this information. The solution to this

42 Chapter 4. Our Work

conundrum is broken into several parts:

4.3.1 Function Arguments, Data Shape, and Types

The related problems of the arrangement, size, and shape of composite data struc-
tures, and the types of individual variables are completely absent in P-Code. While
conjectures can be made in some cases by examining the usage, this problem is too
difficult to solve in general. For instance, sophisticated programs can often use data
of a single type in multiple ways. An example could be a sequence of bits stored in
source code as a 64 bit integer. However depending on the interpretation of that data
in the program, it may very well be accessed as a 64 bit integer, two 32 bit integers,
or any number of other arrangements. Critically, a pair of completely unrelated 32
bit integers that are both acted on independently could realistically be placed next
to each other. Here we can see that even in this toy example, the decision about how
to talk about this stretch of memory is complex.

These difficulties are further exacerbated by the fact that P-Code does not dis-
tinguish between type. The same stretch of data only has a type (is interpreted
according to some encoding) for the duration of an instruction. This means that a
location can be manipulated as both a floating point number and an integer with-
out explicit conversion. In many languages this is not a legal construction, despite
the fact that it can lead to useful computation (the fast inverse square root being
the canonical example W. Kahan [1986]). While this is not uncommon in binaries
and is thus representable in various IRs, there one would likely have additional type
information, explicit type casts, or other auxiliary information.

These facts demand a change of mindset, and luckily one that aligns cleanly
with other aspects of the setting. Instead of trying to produce types and structure
for data, we take P-Code’s approach and leave everything untyped. While this can
create difficulties in terms of referring to data of interest, we again take the stance
that it is better to be direct and inelegant than to be streamlined and potentially
incorrect or misleading. This mindset is taken to varying degrees by all the tools
that work directly with program binaries. In general the standard is to do best effort
typing, but to leave things untyped when ambiguous. For instance, a register that
only participates in integer arithmetic instructions of a uniform width can be typed
fairly safely, but one with mixed widths or encodings cannot.

This change of mindset extends to function arguments, though the situation is
slightly more straightforward. In general, functions in a program conform to some
specific calling convention. A calling convention is a set of shared responsibilities
between the caller and the callee of a subroutine. They determine questions like where
to expect input arguments, where to place returned outputs, which locations are safe
to modify, and which should be left alone. While not included, a reasonable guess
could be made about the calling convention for a function in P-Code. However we
intentionally choose not to make such an assumption. Instead, we take the approach
described in the symbolic analysis chapter 3.1.4, and treat the function as taking the
entire register set as an input, and producing a new one. This captures side-effects in
registers that are delegated scratchpads for callees, and other pieces of information

4.3. The Artifact 43

that are not regulated by the calling convention. While rare, these extra-conventional
effects are sometimes used productively. This formulation of functions captures those
changes that would otherwise be missed. In addition, the cost is small, as it is clear
to see that if a register doesn’t change between the input and output register sets of
a function, then the function must produce no effect there.

4.3.2 Control Flow

The challenges of using P-Code as a computational language discussed in the previous
section are all fundamentally questions about the representation of data. While good
solutions to these questions are important, fundamentally one can always fall back on
a fundamental representation: a sequence of bytes. However when it comes to control
flow, there is no such nicety.

The control flow of the target program’s execution must be represented explic-
itly. However, as stated, P-Code completely lacks these representations. Instead, it
contains exactly the information that an ISA normally would for control flow instruc-
tions: the target of the jump, the register to treat as the target for indirect jumps,
and possibly other registers for conditional jumps.

Note that this information is enough to execute the program, and thus for any
singular execution of the program on concrete inputs, it completely defines a sequence
of control flow actions. However Crucible expects a representation of control flow that
captures all possible paths.

Upon receiving P-Code, our translation layer must provide to Crucible structural
information that it does not possess and did not take as an input. Thus the first
major action that our translation layer must perform is the reconstruction of that
structure so that it can be passed to Crucible.

More rigorously, Crucible expects a Control Flow Graph. A Control Flow
Graph, or CFG, is a directed graph in which each vertex or node is a computation
that is atomic (indivisible) with respect to control flow, and each edge is a possible
transition between vertices, annotated with whatever extra information is appropriate
depending on the nature of the transition. A subset of the instructions of a program
are said to be atomic with respect to control flow if they are sequentially contiguous,
and have the following properties under any execution of the program:

e The instructions must be executed in program order.
e If a single instruction is executed, they must all be executed.

e A control flow instruction (a jump or branch) can only appear as the final or
“terminating” instruction, if at all.

Note that this method of characterizing control flow atomic computations is not
the minimal definition, and in fact contains non-trivial overlap, but is meant to give
the reader intuition about the core idea. That being that one such interval of instruc-
tions or block as they are often called, can only be entered at the top, and can only
be exited at the bottom after passing through all the instructions between. With that

44 Chapter 4. Our Work

property in mind, it follows to build a directed graph out of them, as they have clear
entries and exits.

1 matrixMultiply (a,b,
c,N) {
2 for (i in [0,N)) {
3 for (j in [0,N))
{
4 tmp = 0;
5 for (k in [O, @
N)) |
6 tmp = tmp + i loo
7 ((ali][x]) « || L2722
S } (b[k][j]));
10 c[i][j] = tmp; | LJloop
11 }
12 }
13 } k loop j step i step end
U

Figure 4.1: NxN Matrix Multiply and Corresponding CFG

From this definition one can see that any concrete execution of a program is some
walk along the edges of the CFG of the program. Execution starts at some distin-
guished start node, and proceeds through some number of atomic nodes, following
the transitions from one to the next before finally reaching some node with an exit
condition. Often the final nodes are collected as a single distinguished end node to
mirror the initial start node. Note that not all walks on a CFG are possible execution
paths of the computation. This is because the CFG captures only the flow of the
program’s execution, and optionally some meta-data about the conditions for some
transitions. It does not contain any information about the values of inputs or outputs
of intermediate computations. The CFG may contain a node with a loop transition
to itself with the condition that x1 # 0, but without knowing what the computa-
tion of that block is, it’s impossible to know in general what number of loops a legal
computation can perform.

4.3.3 Creating Crucible CFGs

Converting our own internal representation of CFGs to Crucible’s representation is
the final step in feeding P-Code into Crucible. This process is made non-trivial by
a few differences between Crucible’s internal SSA-like computation language, and
P-Code’s Pseudo-ISA nature.

The first, most immediate issue is that P-Code makes heavy use of location re-
use, i.e. registers are not single-write. There are canonical conversions from forms
like P-Code to SSA forms (recall static single assignment 3.1.1), but luckily we do
not need to implement them ourselves, as Crucible provides a “Registerized” CFG

4.3. The Artifact 45

format, that allows describing computation in terms of mutable registers, and can be
converted to the standard “Core” CFG form internally. Even with this concession,
P-Code’s conception of registers and Crucible’s are not really aligned. Specifically, P-
Code does not describe individual registers, instead having register operations act on
intervals of a register address space. Because of this, register operations in P-Code
in full generality have all the issues of classical memory operations in static analysis,
which we will discuss later. To make the problem feasible, we make some common
but simplifying instructions. We instead operate under these (checked) assumptions:

e Bach register is 64 bits wide.
e A single varnode contains data from at most one register.

e Registers are disjoint; writing to any register will not change the contents of
any other register.

e Registers are indexed. Register ¢ contains the 8 bytes starting at varnode
register offset ¢ x 8 (in bytes).

It should be clear that this provides a register, offset pair for each byte of the register
address space. Furthermore, that these pairs are all distinct. Thus this represents an
unambiguous naming scheme for the data locations there.

These assumptions together with the naming scheme given above let me describe
P-Code’s generalized interval-based register operations in terms of concrete registers
in the way that most ISAs operate. Critically, this is also how Crucible represents
registers: disjoint mutable locations that can accessed directly from a handle (index).
A moment should spent to discuss the second assumption, namely that access are
confined to a single register. This assumption exists to restrict the access pattern to
something that matches Crucible’s pattern. However, this also effectively eliminates
the generality that P-Code creates in the interval representation. This is still a
reasonable restriction to place as very few real ISAs have operations that would
be encoded in this manner. An example could be an x86 operation that performs
multiplication and places the high and low words of result in adjacent registers. While
not inconceivable, this is not a common practice and not core to most ISAs.

If these assumptions become too limiting in the future they can be relaxed. The
single register access assumption can also be lifted, though it requires some sophis-
ticated handling of registers. In full generality, with unaligned and multi-register
access, this is a serious increase in complexity that may also introduce other limit-
ing factors, such as requiring endianness knowledge. Other solutions could include
mixed-width Crucible registers. Given the difficulty of full generality, and its relative
infrequency of use, we chose the assumptions above as a middle ground of expressiblity
and simplicity.

Luckily, P-Code’s conception of operations not being bound to specific data widths
lines up nicely with Crucible’s flexible width operations. Some conversions are re-
quired, such as sign or zero extending certain inputs, but in general both languages
take the position that operations like addition and bitvector concatenation are defined
for all sets of input and output widths that make the operations unambiguous and

46 Chapter 4. Our Work

information persevering. (e.g. one can’t concatenate bitvectors with lengths a and b
into a result location narrower than a + b.) Some massaging of data is required, but
generally both systems store the width information of an operation in the operands
rather than in the operation itself, which is different than traditional ISAs.

With all of this in mind, we now have enough structure to translate individual
P-Code pure register operations. For an instruction that takes only registers as in-
puts and registers as output, we can now translate those register intervals to slices of
Crucible registers (checking our assumptions along the way), and feed Crucible (sym-
bolic) values obtained from the registers into the appropriate operation, placing the
result back in the register indicated by the instruction. In reality there is a lot of data
shuffling behind the scenes to take only a slice of a register as input, or write back
only a subsection of a register without clobbering the rest of the register. In addition,
there are non-trivial issues surrounding Crucible’s notion of what appropriate inputs
(mostly input widths) are for operations. These restrictions on appropriate inputs
require Haskell’s dependent types, which will be discussed in a later chapter 6.3.

Finally, the linking of nodes in the CFG is largely free, as during the construction
of our internal CFG representation, we already check and enforce the restrictions that
Crucible expects, such as only allowing control flow instructions in the terminating
position. Thus the overall graph form of our internal CFG and our desired Crucible
CFG are the same. There are several small issues remaining, namely Crucible’s Block
Argument passing style, and the issue of Memory, which will be discussed in the next
two subsections.

Putting aside those two issues for a moment, what has been described so far is
enough to capture register only programs that only use indirect jumps for function
calls and returns. This is already captures a large number of programs, but the
average small C program is still not fully represented, as the stack is in memory. The
next three subsections detail some of the challenges presented in the handling of such
programs before the final subsection presents the P-Code backend in its final state.

4.3.4 Reconstructing CFGs

Armed now with a grasp of CFGs, we can now proceed to building a CFG to rep-
resent a given program in P-Code. There are several rules that immediately suggest
themselves for dividing a stream of instructions into blocks. These are:

e The first instruction of a function or subroutine is the head of a block.

e If an instruction is a control flow instruction, then the immediately following
instruction must be the head of a block.

e If an instruction is pointed to by some control flow instruction, then it must be
the head of a block.

These simple rules do most of the heavily lifting of separating an instruction stream
into a sequence of blocks. However this is also an occasion where we need to limit the
scope of our tool. The problem comes with the combination of indirect jumps with

4.3. The Artifact 47

the rules given above. An indirect jump, as described in the Prerequisites chapter
1.1.5, takes the value of a register and execution of the next instruction begins at
the location indicated by the register. Furthermore, knowing where a register might
point is not a trivial problem, even in fully deterministic programs. Fortunately, in
reality indirect jumps see fairly limited use in C-like languages. Modern languages
use them more, but C itself, which is the primary target of interest, uses them in
very limited ways. In C they appear in explicitly higher order functions (functions
in which functions are arguments), and sometimes in switch statements, which direct
control flow based on a single value and allow more than two subsequent blocks. In
modern languages, constructions like virtual function tables or dynamically typed
objects call for indirect jumps generally. While such paradigms are expressible in C,
they are not a core language feature and thus appear far less frequently.

The primary way that indirect jumps are used is in returning from subroutine calls.
Fortunately this usage is much easier to model than general usage. We will return to
the question of subroutines and functions momentarily. In our construction of CFGs,
we handle only the case where all indirect jumps are for function and subroutine
purposes. This assumption is checked explicitly and is used only for ensuring that the
set of edges in the final CFG is complete. This means that should this assumption
prove too limiting in the future, the CFG creation process can be augmented to
perform points-to analysis or other static analysis techniques to loosen this narrowed
scope.

In the narrowed scope of only direct jumps, optionally conditional, continuing to
put aside subroutine returns for the moment, the rules above give a complete set of
blocks for a program. Now to connect them:

e A block with a non-control flow terminating instruction has a single successor
block, namely the block next in program order. This block is headed by the
instruction immediately following the terminating instruction of the current

block.

e A block with a non-conditional jump as the terminating instruction has a single
successor block, headed by the instruction indicated by the target of the jump.

e A block with a conditional jump as the terminating instruction has two possible
successor blocks: the following block in program order, and the block indicated
by the target, as above.

With these rules, we now have a mostly complete CFG creation algorithm. We give
an example here of a RISC-V function that tests if an integer is prime by attempting
to find factors one at a time, along with its corresponding CFG. The arrows without
destinations on the right represent subroutine returns.

0 O Ui Wi -

48 Chapter 4. Our Work

Listing 4.1: Primality testing in RISC-V

Our number to test is in register a0, and the caller expects the
result, 1 i¢f it is prime, 0 otherwise, in a0. We will want to call
other things, so we mneed to save a few numbers out of the way. We
make space for them on the stack, a place in memory for storing

temporary values.

isPrime:

addi sp, sp, —16 # Make space for 4 4 byte wvalues
li t0, 2 # Initially a = 2

outer_loop:

mv t1, t0

inner_loop:

st ra, (sp)

st t0, 4(sp)

st tl, 8(sp)

st a0, 12(sp) # Registers that might get clobbered are safely
saved

mv a0, t0
mv al, tl
call multiply

This is another function we are calling out to. It takes two numbers
in a0 and al and returns their product in a0. It’s definition has

been elided for brevity. In most real computers, there would be an

instruction for this, but the most minimal RISC-V set does not have
one.

mv t2, a0 # This is our product to test

Id ra, (sp)

1d t0, 4(sp)

1d t1, 8(sp)

ld a0, 12(sp) # Restore our saved values

beq a0, t2, found # Our product matches

bgt t3, a0, too_big # Our product is too large

addi t1, t1, 1 # Need to keep going, increment b and try again
j inner_loop

found: # We found a counter example

mv al, x0 # Not prime

addi sp, sp, 12 # De—allocate the space we allocated

ret

too_big: # Our product was too big, are there more to test?
beq t0, a0, done # a =mn, we are done

addi t0, t0, 1
j outer_loop

done: # Failed to find any counterexamples
mv 1, a0 # Is prime

addi sp, 12, sp # De—allocate the space we allocated
ret

4.3. The Artifact 49

start

5

L

Ly
inner @*’ found #)

inn@

t3 > al

too big o
@)

N\

©

Figure 4.2: Primality Testing Corresponding CFG

Now to the question of subroutine returns. This is again a question of narrowed
scope. Here our assumption is that any control flow instruction that is not a subrou-
tine call or a subroutine return is limited to targets within the current function. This
is a very reasonable assumption, and easily checked. This assumption is expected
directly by Crucible, so there is no question of leaving space for the future, as there
was with indirect jumps. However this assumption covers the vast majority of C-like
programs, with the only exceptions being particularly esoteric ones.

Armed with that assumption, then the CFG construction rules presented above
together with a drop-in marker for subroutine calls and returns, are enough to create
a CFG for any single function.

Crucible’s IR has the form of a directed graph with two levels of hierarchy. The
outer graph is a function call graph. Each vertex is a function, and it has an edge to
any function that it calls. (Note that this is not enough to assume any nice structure
such as being acyclic.) Each vertex of the outer graph also has a CFG associated
with it, the inner level of the digraph, which represents the control flow internal to
that function. That internal CFG has subroutine call instructions that represent the
out-edges of the associated vertex, and generally at least one subroutine return that
is represented by reversing whatever in-edge of the associated vertex that brought the
current execution to the current vertex.

Finally we have a very simple example of a program with more than one function
and a two level CFG. Most programs would have far more complicated relationships
between their functions (including self loops or cycles) but this example is a simple
three function tree.

0 O Ui Wi -

50 Chapter 4. Our Work

Listing 4.2: Pseudo-code For Orthogonal Matrix Conjugation

multiply a and b and place results in c
matrixMultiply (a,b,c,N) {
for (i in [O0,N)) {
) A

for (j in [0,N)
tmp = 0;
for (k in [0, N)) {
tmp = tmp +
((ali][k]) *
(b[kJ[3]));

c[i][j] = tmp;
}

}

}

conjugate a and place it in b

transpose (a,b,N) {
for (i in [O0,N)) {
for (j in [N {
bli][j] =ali][jl];
}
}

}

place a’ba in ¢, wusing t as a temporary
where a’ is the transpose of a
orthogonalConjugate (a,b,c,t ,N) {
transpose (a,c,N);
multiplyMatrix(c,b,t,N);
multiplyMatrix (t,a,c,N);

}

Applying all of the above together brings us to the P-Code back-end’s internal
conception of CFGs. Next we must feed those CFGs into Crucible.

4.3.5 Block Arguments vs SSA

A small wrinkle is the question of how data progresses between CFG blocks. This
question arises in the following situation. A block C' has two possible predecessor
blocks, A and B. Both A and B write some value to a location x1, which is the used
as an input to some assignment in C' without an intervening assignment to x1. In
short, C' depends on the value in x1, but that value is produced (differently) on each
path to reach C.

In a classic SSA form CFG, data within each block is manipulated and transmitted
through a string of assignments, and when a block has more than one predecessor,
a phi-node is placed before any assignment that uses a contested location like x1
above. Recall that in SSA forms, a single data location is split into versions. So
the question is not the value of x1, but which version of x1 to use? Specifically,
should the assignment in C' that takes x1 conceptually use x14 or x1g?7 A phi-

4.3. The Artifact 51

orthogonalConjugate

i loop

|

dj loop

|

i step

|

after i loop

transpose multiplyMatrix

Figure 4.3: CFG for Orthogonal Matrix Conjugation

52 Chapter 4. Our Work

node is a special operation that takes p location versions (generally all the same
conceptual location prior to version splitting), and produces as output the input
associated with the predecessor block for this particular execution path through the
SSA CFG. Continuing our example above, the statement

x1co < P(x14,%1p)

placed in block C' means “Let the initial value of x1 in C' be x1, if the last block was
A, and x1p if the last block was B.”

This captures a fairly natural intuition of anyone who has programmed in any
imperative language. If a variable does not go out of scope when exiting an optional
or conditional block, the value after said block in the surrounding scope depends
on whether the block was executed. It’s also worth noting that despite this exact
principle being in effect, P-Code, like all assembly languages and ISAs, does not
explicitly encode this information. This is partly because one reason to use phi-nodes
is that they make data dependencies in the CFG explicit. In P-Code, all blocks can
view and act on the entire machine state (i.e. every block can touch every register),
so dependency tracking is not the focus. Even if a block doesn’t touch a register, it
could, and so this sort of dependency tracing is not present in Low P-Code.

Crucible makes use of a different system to accomplish the same goal of depen-
dency tracing. It instead uses block argument style. Block Argument Style re-
places phi-nodes by attaching a set of arguments to each register. A block has an
argument for each SSA location version that is contested. So there is exactly one
block argument for each phi-node one would include in a traditional SSA. Then a
block performs what is essentially a tail call of the next block, instead of a jump
as in a traditional SSA. Returning to our example above, assuming x1 is the only
contested location between these blocks, then C has a single argument 1. Where
A had JUMP C in a traditional SSA, it now has CALL C(x14), a call with a single
argument corresponding to the value the argument should take in the body of C if
it was reached through A. Inside C, statements can use the arguments as inputs
to assignments like any other SSA term. This example is an abuse of notation, but
meant to give the intuition that block argument style makes data dependency explicit
at both the caller site and the definition of destination block. Instead of collecting
all the phi-nodes in the block, instead all contested dependencies on prior blocks are
explicit in the arguments.

Again, P-Code lacks all explicit dependency information, whether phi-nodes or
block arguments. So either way we would need to reconstruct this information. Re-
constructing block arguments given a CFG is not very hard. Simply walk the graph,
and for a node, every location that it observes without first writing to is a depen-
dency. A block has as arguments all of its own dependencies, and the union of the
dependencies of all blocks that are reachable through the block in question.

However for convenience, we will be emulating P-Code’s uniform approach. Specif-
ically, instead of tracking block dependencies, every block takes the full register state
as arguments. Thus the block arguments for P-Code translated this way are overly
conservative, as many registers will be included as dependencies that are not in fact
in use. This same approach will be extended to functions as well. This follows our

4.3. The Artifact 53

general approach to ensure the inclusion of all effects of a computation rather than
using a more streamlined or tighter fitting approach that might miss some effects.

4.3.6 Memory Issues

For our purposes the differences between memory and registers are twofold. The total
number of data locations between all the registers is much much smaller than that
of memory, and that memory permits indirect access. What that means is that for
an operation on registers, the set of involved registers is known exactly by simply
examining the program. Memory on the other other hand, is addressed indirectly.
This means that simply looking at the program alone is not enough to determine
where memory is affected. The classic load and store instructions in many ISAs,
and which P-Code models, take a register as an input that determines the location
in memory that data is being moved to or from. We say that the register indexes
memory.

This greatly complicates analysis. With registers, if an operation takes a register as
input, one can simply look up what is known about that register’s contents. On a load
from memory into a register however, one can’t simply look up what is known about
that location, since which location to look up is also a term in the computation. If one
gets lucky and during analysis we know that the indexing register can only contain a
single value, then the lookup is still possible. Consider the case where the indexing
register could be one of two values, ¢ or j. Then the most precise statement about the
contents of the register that was written during the load is that it contains Mem (i)
if the indexing register was i, and Mem(j) if it was 5. Those lookups likely contain
complex symbolic restrictions, and much of the time, the indexing register will be far
less constrained. It’s clear that this will lead to a blowup of symbolic complexity even
on simple programs. Even simple operations, such as writing to a location, and then
reading back that very same register may be complicated to resolve, despite the fact
that it is clear that they should result in the same constraints.

There are several approaches to this problem. While difficult, it is not completely
intractable, and there is a developed field, points-to analysis, that tries to an-
swer this class of questions. One can find an account of basic points-to analysis in
Schwartzback. One approach in other parts of Crucible is to postpone these problems
until symbolic execution time, and keep a list of memory locations that have been
written to. On a read, walk that list to find a matching write for each possible value
under the constraints on the indexing value, and return that set of values. This is
correct, but extremely expensive in many cases, particularly for programs with many
memory accesses and non-local access patterns.

The method we will be using is simpler but more crude. Any write to memory
succeeds automatically. Any read from memory produces a completely unconstrained
symbolic term. In short, in our analysis, every memory access could produce any
value, even in trivial cases like a write followed by a read to the same location. This is
much faster, but obviously produces extremely over-conservative symbolic constraints,
as large amounts of information are being destroyed. Due to the overly conservative
nature of this analysis, it becomes impossible to establish useful bounds on many

54 Chapter 4. Our Work

programs, particularly those with relatively few subroutines and large working sets.
Regardless, it remains a useful strategy for many programs of interest, particularly
when combined with a human who can look at the binary and manually provide
assumptions.

4.3.7 Final Artifact

The artifacts of this thesis are twofold. The first is plug-in for Ghidra that dumps
the P-Code of each function into a file. This script was discussed in the chapter on
P-Code and was a relatively straightforward change to some existing plug-ins.

The more interesting of the pair is the backend for Crucible. With the concepts in
this chapter, we can now express completely what the backend does. Specifically, it is
a Haskell program that relies in the Crucible core library and performs translation of
P-Code into a Crucible CFG, suitable for making symbolic queries on. This process
is composed of a number of steps. First is parsing the P-Code from Ghidra. This
simply entails reading in the file containing the P-Code and transforming it into a
list of functions, each composed of a list of instructions with associated addresses
and operands. Next is reconstructing the CFG for each function. We do this with
the same algorithm discussed in the symbolic analysis chapter 4.3.4. This produces
a directed graph for each function. We perform further checks and manipulations to
produce the suitable CFG. For instance, we check that no block is terminated with an
indirect jump (excluding returns), allowing us to be assured that we have the full list
of CFG blocks and we are not accidentally treating two blocks as connected. After
finalizing our CFG, we annotate edges with the appropriate information (conditionals,
etc), we implement back edges, allowing the digraph to be traversed in reverse, etc.
This annotated CFG is then suitable to be fed into Crucible.

Our various simplifying assumptions from previous chapters are still in effect. We
model memory reads as unconstrained symbolic values, we do not support indirect
control flow, and so on. Thus our tool is suitable for operating on primarily register-
bound programs, and will be of little to no use for programs with high memory usage
or a large working set, forcing the use of memory as a swap space. Limited though
it may be, These limitations have been implemented at strategic locations so that if
the assumptions are to be lifted in the future, a full rewrite will not be necessary, a
module that handles memory accesses, for instance, has a natural place to slot in.

Stated as such, however, this program seems far simpler and easier to write than
it actually is. This is because while the above is a full description of what the
program does, how these things happen is actually the source of the majority of the
complexity of this thesis. This complexity is introduced by Crucible, as it is written
in a particularly strict paradigm of Haskell. As learning and producing this style
was a major component of the work on this thesis, the remainder of this document
is dedicated to discussing some of theoretical techniques and paradigms in play in
this project. We are particularly interested in dependent types and monadic style
Haskell, which we will define and motivate in the next two chapters.

Chapter 5

Type Theory

God bestows to his most patient of children only the
most agonizing of tasks. Not for our inherent
suffering, but for our finesse and skill unparalleled - to
serve the people.

Ozymandias Juarez

In order to understand the power of dependently typed Haskell, we first need
to have some idea of what a dependent type is. To that end, this chapter is an
overview of one formulation of several flavors of type abstraction, and what one
might use them for. This chapter is written for a reader that has had some exposure
functional programming and lambda calculus, but the ideas introduced should be
understandable to any reader.

Specifically, this chapter is a light treatment of the hierarchy of type systems
known as the Lambda Cube. All the systems of the lambda cube are based on the
simply typed lambda calculus. The reader is expected to have basic familiarity with
the original untyped version of the lambda calculus. Those unacquainted can find
an overview here Horwitz. The basic mechanics of the creation and application of
lambda abstractions and the concept of equivalence up to beta reduction and eta
reduction is all that is required of the reader.

5.1 Simply Typed Lambda Calculus

The simply typed lambda calculus is an extension the the original untyped lambda
calculus in which each term in the calculus has an associated type. Informally, the
type of a term is a piece of meta-data that describes the shape or interpretation of
the term inside. In practical programming languages these types are informative in
terms of how to interpret the contained data. In these more formal languages however,
types serve to separate collections of terms from one another. We will see in a later
section that types in these more abstract contexts are not without interpretation
either. The simply typed lambda calculus extends the base untyped lambda calculus

56 Chapter 5. Type Theory

in one straightforward manner: each term must have exactly one type which does not
change across appearances of that term, and types must match when substitution
occurs.

When introducing a term, we write z:t which is some term x with type ¢.

There must exist a base set of types B, each of which has some associated set of
constants T,.. These form the atoms of the type. For instance a type could be nat, the
type of natural numbers. Then the constant set for nat would be the set of natural
numbers. Let T" € B be some type. Each type in the simply typed lambda calculus
must either be a base type or combination types formed via functional abstraction.
The syntax of a completely general type is then:

TdéfT—>T’T

Where a — b is the type of a lambda abstraction that takes a term of type a and
produces an expression of type b. Terms change compared to the untyped version as
well: def

e =ux|luT.e|eel|c

These are a reference to a variable, the introduction of an abstraction (now with a
mandatory type annotation), the application of an abstraction, or a constant respec-
tively. For example a construction that increments a natural number (assuming a +
operator defined on naturals) could be

inc ? \vnat . (r+1)

where inc:nat — nat.
We will not present the typing rules in full detail, as they are symbol dense and
not greatly helpful. In prose they are,

e Constants have the type they ought to.

e If term x:0 would imply the existence of a term e:7, (Az:0 . e), the abstraction
that takes some o z and substitutes it with e must have type o — 7. It takes
a o and produces a 7.

e If you have an abstraction e;:a — b that takes some type, and a term of that
type es:a, then the application (ejes):b is well typed as expected.

The simply typed lambda calculus has the same reduction rules as its untyped
cousin, restricted to statements with appropriate type. Namely

(Az:o . t)u =g tlx < u

holds for t:7 and wu:o, as one would expect from the rules above. Similarly for eta
reduction:
Ax:o . tx =,

when t:(0 — 7) and z is not free in ¢. Operationally, the choice of evaluation strategy
is the same as the untyped version.

5.2. Lambda Cube 57

)\w S)\C
)\2)\P2

;J» APw

Figure 5.1: Lambda Cube

Moving away from pure formalism, the reader might note that the only kind of
abstraction in this version is —. This makes for somewhat clumsy computation,
as it doesn’t capture the notion of associating terms into compound terms unless
said compound term is also a base type. Additionally, there is no way to define an
abstraction on more than one type at a time. These are among the concerns that
systems extended from simply typed lambda calculus aim to address.

5.2 Lambda Cube

This account of the lambda cube is drawn from Barendregt [1991].

The lambda cube is a collection of eight related type systems that are naturally
structured as a cube in three dimensions, with one system at each corner. The
dimensions are associated with a kind of abstraction in the type level of the system,
with the low end of each dimension lacking said abstraction and the high end allowing
it. The three kinds of abstraction are independent, and thus all eight corners are
occupied and distinct. The systems also have a natural partial order structure, with
the systems on the high end of each dimension include the system on the low end of
the dimension. This follows immediately from the system with the more flexible types
being at least as expressive as the same language without the additional abstraction.
An image of the lambda cube is presented to help understand this relationship.

The close bottom left corner labeled with A is the simply typed lambda calculus
described above. Proceeding upwards allows for the creation of terms that depend
on types. Proceeding into the page allows for types depending on types. Proceeding
right allows for the creation of types depending on terms.

A term depending on a term is universal for all systems of the lambda cube. It is
the sole kind of abstraction present in the simply typed lambda calculus. A lambda
abstraction term x:a — b when applied to some term v:a produces a (zv):b. The
resulting term (zv) of the application depends on the choice of input term (v).

58 Chapter 5. Type Theory

5.2.1 Universal Qualification

Another piece of formalism we need is product terms (and later product types). We
want to extend our basic syntax with the symbol II, which we can use like so

IIx:A

which means “for all x of type A.” Note that alone this is not a valid construction
in any of the lambda cube systems, but we will see that it has intuitive use in the
following abstractions.

For example we can re-express the “type” (informally) of functions from type A
to B as

Ila:A. B

or “for all terms a of type A, some term of type B.”

5.2.2 Polymorphism

An example of a term that depends on a type is a polymorphic function. Polymor-
phic functions are functions that when applied to a type produce different term-level
functions. A natural example could be the identity. Every type a has an identity
function I,:a — a that takes each term with type a to itself. However it’s natural
to think of a single unified identity /. This polymorphic version can be applied to
any type t and produces [;, the identity on that type. This abstraction is notated
formally with a IT universally qualifying over a type like so

I = [le:x . Ax:e . x

which says that for all types e, I takes a term of type e to itself. Here % represented
the set of all types. This is discussed in greater depth in the chapter on Haskell. This
qualification is sometimes written with a A instead of a II for specifically universal
qualification over types, but we will avoid this notation to prevent an explosion of new
symbols. Often when using A, the type will be supplied explicitly as an argument.
Again we will avoid this explicit notation to simplify expressions. No ambiguity is in-
troduced, as the term arguments are of concrete type and thus the type specialization
can be inferred.

5.2.3 Type Constructors

A type that depends on a type is called a type constructor. This follows the
intuition that it is a function that takes a type and produces a type. Thus one can
construct a new type out of existing types. At the simplest level, this abstraction
allows one to write A — B where A and B are types. A motivating example could
be pairs where the two elements contained must all be of the same type. Consider
the following encoding (from Horwitz) of a pair type using an access function where

5.2. Lambda Cube 59

B is the type of booleans, defined like so

TRUE:B “ Te:x . Azie . \yee . o
FALSE:B ¥ ITe: . \aze . Aye.y

We can see that both true and false are polymorphic functions on two elements. True
returns the first argument, ignoring the second, and false does the reverse. With
these definitions we can define

pair L Newx . Me . Ajie. (As:B . sij)

The explicit argument e is some type, and the resulting term is a function that that
takes the two terms of the given type, and returns a function that returns either
the first or the second depending on the given boolean. This formulation requires
polymorphic functions, but one can use type constructors without them. The two
kinds of abstraction are often found together but not fundamentally interdependent.
In the standard style, the right side of this definition would be

Aesx . Nice . Ajie. (As:B . sij)

Which indicates that e is a type and not a term.

5.2.4 Dependent Types

A dependent type is a type that depends on some term. For a motivating example that
will become relevant later, consider one formulation of restrictions on the naturals
in a typed lambda calculus with both type constructors and dependent types. This
definition is simplified for the reader and original, but is inspired by the formulation
of similar structures in the Haskell library parameterized-utils, Inc. [2024] which
is closely related to Crucible.

Consider a union type that we will call Either. A union type U is a type formed
by some collection of other types ¢1,t,. .., where each term z:U must be equiva-
lent to some term v:t; for some ¢; in U. Our definition will restrict to two internal
types. Canonically these types are associated with left and right. Consider the type
constructor for a union between types [and r

EITHER: (¥ — rix — Ey,)
with

LEFT % ik Tlrox . Avil . e(EITHER Ir)

RIGHT “ Ml . Trek . Avir . e:(EITHER Ir)

as functions that create an Ej,. term given a [or r term respectively.

60 Chapter 5. Type Theory

This definition of Either uses type constructors and universal qualification, but
not dependent types. Note that a function that takes an Ej,. term as an argument
must be defined for both a left and a right inhabiting value, though often one of those
definitions may be the identity function (canonically the left type).

Consider an attempt to define subtraction on the natural numbers. Subtraction is
a naturally useful operation, but one runs into difficulties due to the natural numbers
only proceeding infinitely in the positive direction. What should the value of 2 — 3
be? One can use constructions like Either to define an operation that can fail or more
sophisticated embeddings of the naturals (following Peano arithmetic for example),
but with dependent types one can create a natural constraint at the type level to
encode this restriction around subtraction.

Subtraction is defined on the natural numbers if the second argument is at most
as big as the first. So a natural tool would be to define a narrowed type for naturals
larger than some given natural, N,,. With dependent types we can do just that

NARROW :N — N — Egy.,

The definition is elided for brevity, but in prose this function takes a constraint n

followed by some value v, and if v > n then returns RIGHT v, otherwise a unit type

(denoted ()) as a left value to represent a failure. Note that the right type produced

here is inhabited all naturals greater or equal to n, and only those naturals. Thus for

a value to inhabit N>, is a type level guarantee that the value has said property.
From here we can define subtraction like so

def

SUB = An:N.Av:Ns), .n—v

again simplified by the assumption that the basic type N has some binary operator
— that only has defined behavior for appropriate inputs. Note that even if the base
— operation produces undefined and undesirable behavior for unsuitable inputs, this
dependently typed version is safe in all cases and does not require explicit juggling of
Either terms. Compare this definition to another natural one that simply takes two
naturals and returns an Either that accounts for the possibility of undefined behavior
by returning a left unit value for unsuitable inputs.

For this simple case both are feasible definitions, but when part of a larger, more
complicated system, it is often useful to move that sort of checking for valid inputs
to the type level, rather than performing safety checks at every step.

Note that the narrowed type N, is just that, a type, but depends explicitly on
a term n. This is a canonical use of dependent types, as order constraints like > are
common and unwieldy to express otherwise.

5.2.5 Systems of the Lambda Cube

We will not go into much detail about the exact systems of the lambda cube, as it
is not really the focus of this chapter. Its explanation here is to provide notation
and a formulation of some canonical patterns of abstraction. The diagram from the
beginning of the chapter is duplicated here for convenience.

5.3. Types and Proofs 61

)\w S)\C
)\2)\P2

;J» APw

Figure 5.2: Lambda Cube

Briefly, the system in the bottom left corner, A\ or sometimes A_, is the simply
typed lambda calculus, which contains none of these new types of abstraction. Moving
upward, the system A2 extends A with polymorphic types (terms depending on type).
Into the page, the system Aw extends A with type constructors (types depending on
types). In turn, Aw is more common and contains polymorphism in addition to type
constructors. Similarly, the bottom right system AP extends with dependent types
(types depending on terms), AP2 with both dependent types and polymorphism. The
system A\Pw is quite rare and contains dependent types and type constructors, but
not polymorphism. Finally in the top right, AC, or the Calculus of Constructions
contains all three additional kinds of abstraction compared to A. It largely eliminates
the distinction between terms and types, and is extremely expressive.

A particular note should be made of Aw, as Haskell is generally considered to be
equivalent with this system. As we will see in the chapter on Haskell however, it can
be arranged to emulate dependent types, making it closer to AC'.

5.3 Types and Proofs

Taking a step back from pure formalism, it is worth returning to the semantic in-
terpretation of types. As discussed above, a type at its simplest is a way to provide
context or an interpretation to a value or term. Types provide “shape” to terms,
loosely. This is desirable both as it allows one to more easily associate meaningful
semantics to the pure formal manipulations of the family of lambda calculus systems,
and as it can provide helpful guard rails when attempting to formulate expressions in
those systems. As types become more flexible in the ways that are described above,
its natural to want to express more subtle semantic meanings to types and their re-
lations. Arguably the zenith of that association of semantics is the Curry-Howard
isomorphism Howard [1980].

The full strength of the Curry-Howard isomorphism is far beyond the scope of this
thesis, however the core idea is relevant and very much in play in the code artifact
that accompanies this document. Informally, it says that types are propositions, and
terms are proofs. A type is said to be inhabited if there is exists a term of that
type. An inhabited type is equivalent to a proposition for which there is a proof. To
see this isomorphism more clearly, consider a sequence of functions between a variety
of types. Each function is a legal manipulation of axioms or derived theorems to

62 Chapter 5. Type Theory

transform one proposition into another. In the same way that formally a value of
some type is equivalent to the sequence of functions that produced it, the final proof
is equivalent to the sequence of manipulations between individual steps. Consider
a type LeqProof parameterized by two naturals. An inhabiting value of that type
represents a proof that the first parameter is at most as large as the second. Then a
function one can define is taking a LeqProof n m along with some r and producing
a LeqProof n +r m + r. We see that with careful initial assignment of semantic
meanings, the equivalence between the function that manipulates LeqProofs and the
theorem that adding the same natural to both sides of a < relation preserves the
relation is immediate.

The Curry-Howard isomorphism is a bridge between standard mathematics and
theoretical computer science. This is clearly visible when applying it to the lambda
cube. The systems of the lambda cube are equivalent to several known systems of
logic outside computer science under the isomorphism. Notably A, is equivalent
to Propositional Calculus, AP is equivalent to Predicate Logic, and AC' is (roughly)
equivalent to Intuitionistic Logic, the logic of constructive mathematical proofs.

With the mindset of types as propositions and values as witnesses to the provabil-
ity of the proposition, we are now armed to talk about dependently typed Haskell as
it is used in the Crucible library.

Chapter 6
Haskell

A monad is a monoid in the category of endofunctors,
what’s the problem?

James Iry (Saunders Mac Lane)

Named after the influential mathematician and logician Haskell Curry, the pro-
gram language, Haskell, that Crucible is written in is worth some discussion. In-
vented in the 1990s and continuously developed to this day, Haskell is not a partic-
ularly common language. Its use is concentrated in academia and certain corners
of industry. The language stands out for being rich with meta-programming fea-
tures, being extremely flexible, and serving as the site of many cutting edge ideas in
programming language design.

The aspects that make Haskell stand out from many programming languages are
the same reasons that it appeals to corners of academia and industry. Primarily, those
are being purely functional, lazy, having rich types, and having type inference. These
features do not make Haskell unique, but they, particularly in conjunction with one
another, were pioneered by Haskell.

The primary aspects of interest in this chapter are the rich types and implications
of a purely functional language. As such this chapter will give an account of types in
Haskell while introducing aspects of Haskell’s syntax, followed by the other relevant
aspects mentioned above. The chapter concludes with a description and motivation
of dependent types in Haskell, and how they are used in the context of Crucible.

Types in Haskell are relevant to this thesis because Crucible uses extremely rich
types, even by Haskell standards. We saw in the last chapter that rich types are ex-
tremely expressive and that they are in correspondence with semantically meaningful
propositions. By mixing types representing propositions and standard programming
types, Crucible code is safe from a large variety of possible bugs by encoding assump-
tions as types.

64 Chapter 6. Haskell

6.1 Types in Haskell

Armed as we now are with some understanding of formal type theory, Haskell types
should seem quite familiar. This section motivates types in practical programming
languages as opposed to formal tools like most lambda calculus variants. Along the
way we will introduce some of Haskell’s syntax pertaining to types, and provide a
pair of common and conceptually useful methods of understanding some key Haskell
ideas.

At the most basic level, types exist in languages like Haskell to provide a context to
a piece of data. Much of the time, the contents of a variable contain some information
(literally as some arrangement of bits), and the type of the variable tells one how to
interpret those bits, what operations suggest themselves, etc. Types exist to separate
matrices, integers, and whatever other kinds of objects a program might want to
manipulate. They can be thought of as a set of possible values together with a label
to distinguish the values from similar ones of a different type, for instance 8 as a
natural vs 8 as an integer. While they have the same semantic meaning, and are
likely convertible to one another, they are in fact different, because they differ by
type. The label tracks this distinction.

In discussing Haskell, “value” is preferred nomenclature to “term”, but they are
largely equivalent. The statements about terms in the lambda calculus chapter should
be applied to values when talking about Haskell.

In Haskell, every value has a type, and can be explicitly annotated like so:
v :: t. This means that the value v is of the type t. A function in haskell
is something that takes a sequence of values of known types and produces a value of
a known type. That relationship is represented as f :: a —> b, which says that f
is a function that takes a value of type a and produces a value of type b . Functions
can be defined on more with more than one argument. Binary operations for example
are expressed as g :: a —> b > c, which takes a and b and produces ¢ . This
process is known as currying, also after Haskell Curry, and can be understood either
as a function on two arguments, or a function on a that returns a function on b
that returns a ¢ . (We say that the function operator —> is right associative.) The
idea that function types are also types is central to Haskell. So a completely generic
type could be either a simple type such as a or a functional type a —> b .

Types can be separated further by kind. In the same manner as types distinguish
the shape of values, kind distinguishes the shape of types. Every type has exactly
one kind, and as with values and types, kinds do not change over the execution of a
program. Kinds can be understood completely as “the type of a type”. Haskell also
has sorts above kinds with the same relationship, but currently everything in Haskell
has the same unified sort.

Kinds exist to partition the space of types. In standard Haskell, there are an
infinite sequence kinds, to convert the infinite collection of types in Haskell. The most
basic kind is * or Type, which both refer to the collection of all zero-arity types.
Arity refers to how many arguments something takes before it can be evaluated.
A function that takes one argument has arity one, a unary function along with an
argument together have arity zero, a function that takes two arguments has arity two.

6.1. Types in Haskell 65

The next kind in standard Haskell is Type —> Type , which is the kind of types that
that have arity one. This is Haskell’s version of a type constructor. It takes a type as
input and produces a type. Theses are central in Haskell and will be explained further
momentarily. For every arity of type constructor, there is an associated kind. For
instance arity two type constructors have kind Type —> Type —> Type . [t’s natural
to think of type constructors are type-level functions, and we will do so.

As should be visible already, types in Haskell are a complicated business. However
it turns out that the structure of the type system in Haskell is well represented
mathematically. That encoding is as a category.

6.1.1 Types as a Category

Haskell’s development was motivated by an interest in lazy functional languages. A
highly desirable trait for a lazy language to have is referential transparency, the
property that a function application / call can be replaced with its return value with-
out changing the computation. In a lazy language without referential transparency,
it becomes extremely difficult to write code with side effects, as the side effect must
either be expressed concretely via some sort of stream object, or modeled via con-
tinuation passing style programming. If a lazy language allows effectful statements
without some method of tracking them, then programming consistent behavior be-
comes extremely difficult, as the effect will occur when the associated code is accessed
rather than when it was defined. Recall that this is a direct result of the definition of
a lazy language. Thus two reads from a file or from the user could be interpreted in
either order depending not on when they were inputted but when their content was
inspected. This is obviously highly undesirable. The other methods of effect tracking
were functional but unwieldy.

Several major versions after the initial release of Haskell, monads were introduced
to the Haskell type system. At a high level, a effectful computation in Haskell is
represented by a sequence of monadic types. The monad contains as the categorical
object the standard return type of the computation, as it if were not effectful, and
the effect (critically the order of the effects) is captured in monoidal element. An
example appears later in this chapter for the state monad. This encoding of the
nature and effectfulness of a computation in the type system leverages the already
extremely powerful type system while providing a flexible and convenient solution for
modeling computations that would otherwise rely on information outside of the type
system.

Modeling effectful computation is critical to any programming language, as with-
out it, a program can’t interact with anything outside itself. It can’t take in any
information on which to process, and it can’t output any information that it may
have computed. Naturally, if one writes a program that computes some value, one is
likely interested in said value. Without effects, that value is inaccessible.

Embedding the tracking of effects in the type system is both natural and powerful
because the type system is what maintains the safety and correctness of the lazy
evaluation that is central to Haskell.

Monads in Haskell are slightly different than those from standard category theory.

66 Chapter 6. Haskell

This section will delineate some of those differences and lay out the basic functionality
of monads in Haskell. In general, Haskell’s monads allow one to compose functions
within some context. What that context is depends on the monad.

Consider the category Hask. The objects of Hask are the full collection of Haskell
types (we can think of types here as possibly infinite sets of possible values). The
morphisms are functions (excluding type constructors), and function composition is
associative with . as Haskell’s function composition operator. This description of
Hask as a category is light and not rigorous, as the full rigor version requires limiting
to terminating programs, restrictions on kinds and other details that are out of scope
for this thesis.

Functors and monads as introduced in the Prerequisites chapter 1.5 are relevant
to Haskell. Particularly of interest are monads.

A functor is a mapping between two categories that preserves the identity mor-
phism for each object and respects the composition of morphisms. Thus for a functor
F:C — D, F(id.) = idp)ep. We are only interested in endofunctors on Hask, func-
tors that go from Hask to itself. Thinking about what the means, we find that we are
looking for something that takes a type (an object in Hask), and produces another
type, subject to some rules. That should sound familiar, as type constructors are
exactly that: something that takes a type and produces a type. So looking for our
endofunctors in Hask, we are now looking for a type constructor (something with kind
Type —> Type) However we also need our type constructor to respect composition
and identity.

As a reminder, we want F'(g o h) = F(g) o F'(h) for our functor F' and g, h mor-
phisms (Haskell functions). Consider some arbitrary type a. Our functor f takes
every type to another type, so f a must also be some type. We won'’t give it a name,
and simply call it f a. We are looking for some function fmap that takes morphisms
a —> b and produces morphisms f a —> f b that satisfy fmap id = id (the iden-
tity) and (fmap f) . (fmap g) = fmap (f . g) .

That’s exactly what Haskell does. A type constructor f implements Functor if
it provides some a function fmap :: (a —> b) —> f a —> f b for arbitrary a, b.
Unfortunately the identity and composition properties must be checked and assured
by the programmer.

Let’s motivate this categorical Haskell with an example. There is a type con-
structor [] which for any type constructs a list of that type. A list in Haskell is an

ordered sequence of values all sharing the same type. So [a] is a list of values of
type a . Consider that you have a list of items, and you what to apply some function
to each element, resulting in a new list in which each element in order is the corre-
sponding element in the input list with the function applied to it. This “mapping”
over a list is a common recurring pattern of computation. With some thought, we can
see that map , which does exactly what we just described is really fmap specialized
to a list. Given a function on each element, it produces a function on lists with the
same behavior. This “lifting” of functions to work on structures is a central concept
of idiomatic Haskell.

The other central categorical idea present in Haskell is the structure of a monad

6.1. Types in Haskell 67

Various. A monad is a monoid in the category of endofunctors of a fixed category,
here Hask. So the appropriate thing to look for is some type constructor that has
an associative operation and an unit that behaves appropriately with the associative
operation. To start, every monad in Haskell is a functor. So our monad m must have
some fmap :: (a —> b) > m a > m b as described above. Being a functor means
that functions between internal types can be lifted to the wrapped monad type. It
also means that composing functions and then lifting is equivalent to lifting and then
composing.

Consider the class of objects of form a —> m b in the category of endofunctors
on Hask. Putting aside the implementation details of how one makes a m b value
from a a value (which is likely unique to each monad), it is useful to give names to
two functors of interest. The first is return :: a —> m a. This is perhaps the most
natural function that produces a monadic value. Knowing how to make some m a
value from a a value is a must for any useful monad. What Haskell calls return
is what was called n in the monad definition given in the prerequisites chapter 1.5.
The other is bind :: m a —> (a —>m b) > m b, (previously u) also commonly
written as an infix operator >>=. Thinking of the monad as “wrapping” the internal
type a is a useful mindset here. From that point of view, bind says if one has a
wrapped value, and one can make another wrapped value of possibly different type
given a value of the internal type a , then it’s natural to be able to apply the function
to the wrapped value, “unwrapping” m a in the way that is suitable for the monad
in the process.

Now we have our two components of a monoid, though we still have yet to show
that they behave as we want. We want bind to act as our associative operation
(think composition) between morphisms Various. Put simply, we want functions that

look like f :: a - >mb and g :: b > m ¢ to be composable, and that com-
position should be associative. So just as g’ (f’ x) = (g’ . f’) x for stan-
dard functions f’ :: a > b and g’ :: b > ¢ and x :: a, it’s natural to want
(v>>=f) >>=¢g = v>>= (x > (f x) >=g). Note that x —> (f x) >= ¢

is Haskell’s syntax for a lambda (anonymous function). The names on the left of the
arrow (here x) are the arguments, and the expression on the right of the arrow is
the body of the function. This associativity law basically says that it is equivalent
to perform two actions in sequence or to merge to actions into one action and then
apply that action.

Finally we have that return acts as a identity element for >>=. We have that
(return x) >= f = f x and that v >>= return = v. So return doesn’t do
anything once a value is already wrapped by the monad. Applying it as an action
again doesn’t nest wrappings, return simply takes a value and lifts it to be a monadic
action.

As with Haskell’s functors, these two laws must be manually assured by the pro-
grammer. However with them in place, monads act as we expect them to, and are
well modeled categorically.

68 Chapter 6. Haskell

6.2 Pure Functional Programming

A functional programming language is one in which the primary method of com-
putation is the calling of functions. Haskell is on the far end of the spectrum of
languages from imperative to functional in that function calling is the only method of
computation in Haskell. A pure functional language is one in which all the functions
must be pure, namely have output dependent solely on the immediate inputs and
neither observe nor modify any external state. A pure function can be understood as
a function that will produce the same output for the same set of inputs regardless of
context, and the execution of which will not cause any contextual value to change.
Haskell unequivocally requires that all functions (and thus all computation) be pure.
Again this pureness provides referential transparency, which is an extremely desirable
trait for a lazy language to have.

Having functions be pure is desirable because, as often trumpeted by Haskell
supporters, it ensures that computation is side effect free. This is chiefly in contrast
with unintended or unforeseen side effects. A common cause of bugs in large libraries
in some languages that do not enforce these restrictions is using functions that mutate
some external state that is not accounted for by the programmer. If this causes
problems down the line, it can be hard to track down the source of the error, as the
culprit function call may not be obviously related or nearby in the code.

While avoiding side effects is safer, completely eliminating them also prevents
their productive use. Besides being inconvenient for tasks where external state may
be intuitive or efficient, it also eliminates some central features of programming,
such as receiving input to the program or producing output. These operations are
fundamentally impure, as the result of the program depends on the order that they
were invoked. Naturally, eschewing input and output entirely is not viable. The
solution comes to us in the form of monads.

6.2.1 Why Monads Matter

Arguably the biggest legacy of Haskell so far in the programming language space,
monads are Haskell’s solution to the problem of state in pure functional programs.
State refers to contextual data that effects the computation, either directly as an
input to some calculation or in selecting the computation to perform. We say that a
computation is stateful or stateless if it has or lacks this property, respectively.

Haskell calls individual monad computations actions, and they represent delayed
computations. Consider a computation that produces some value v :: a and uses
some state of type s . We naturally want to interleave actions that consult or modify
the state with pure computations that don’t touch the state directly. Haskell repre-
sents this in monadic form by wrapping the immediate type of each computation in
a monad that represents the context of a computation occurring in the presence of
state, even if that computation itself isn’t directly interacting with the state.

The Haskell type State s a is a monadic action of type a that is informed by
some state of type s . The two basic operations of any monad exist, namely return
and >>= (also called “bind”). The former has type return :: a —> State s a.

6.3. Dependently Typed Haskell 69

The later has type (>>=) :: (State s a) —> (a —> State s b) —> (State s b) .
These allow you to lift pure computations to monadic actions and compose monadic
actions, respectively. Naturally we also need ways to interact with the state. For our
fixed state type s, we can use get :: State s s to produce the state as a value we

can then compute with, and put :: s > State s () to replace the stored state
with the argument.

These tools allow one to create a sequence of bind actions that together rep-
resent some computations that consults and modifies state, eventually producing
some value and some final state. We can put this sequence to effect by calling
runState :: State s a > s > (a,s), which supplies the sequence of actions
with some initial state and then produces the final outcome.

Haskell’s State monad represents stateful actions as a function from a state to
a pair of a state and a value. The monad is simply a nice way of wrapping that
abstraction up in a way with familiar rules. When the computation is run, the
distinction of external state and argument is erased, as internally the state is just
another argument. The monad saves one from writing in a state argument every
time, as the majority of the computations don’t need to touch it directly.

Technical details aside, thinking of external state and the input and output of a
program as a monadic context in which computations occur allows for a very practical
way to handle the difficulties of those inherently sequential problems in a way that is
consistent with the lazy nature of Haskell.

Monads in Haskell appear constantly and are central to writing powerful and
idiomatic Haskell. For instance, once annotated with the information we reconstruct,
each function of the binary being analyzed is fed into Crucible through the generator
interface, which is a complex monad (really a stack of monads that act together as
a large monad). Among its other utilities, this monad models the inherently stateful
actions of reading and writing mutable registers. When inside this generator, one
can write things like readRegister r and get the contents of the register that is
suitable for the position in the program. The monad handles all the mutability of
the program state and allows one to write (or in this case translate) familiar looking
imperative assembly rather than juggling SSA forms and explicit side effects.

6.3 Dependently Typed Haskell

Now that we have a grasp of both standard Haskell and some type theory presented
in terms of the lambda calculus, we can appreciate the true power and complexity of
Haskell’s type system. As mentioned at the end of the type theory chapter, Haskell
is equivalent to the system Aw. It features type constructors and polymorphism,
but at first glance not dependent types. One can’t put a term in a type definition,
that much is clear. However Haskell’s polymorphism is more refined than that of the
lambda cube formulation. In the lambda cube, each type in a lambda abstraction
or type constructor is either a single concrete type, or a universal qualification over
all possible types. In contrast, Haskell features type classes, which group types by
some shared behavior, similar to traits in Rust. These type classes allow one to write

70 Chapter 6. Haskell

functions and type constructors that are qualified over all types in one or more classes,
rather than all possible types. This distinction allows us to be far more precise with
our type constraints.

A type is said to implement a type class if implements the minimal complete
definition of that class. For instance, the class Ord captures the property of some
type a being totally ordered. In order for a to be in the type class Ord , it must
first be in the class Eq, which states that that values of type a can be compared for
equality. Then the implementer must supply some definition of compare for values
of type 'a. This function takes two a values and produces a verdict from equality,
less than or equal to, or greater than or equal to. The implementer is responsible for
maintaining the invariants and properties that the class expects: compare is actually
a total ordering, == is an equivalence relation, etc.

This intermediate level of specificity allows for the emulation of dependent types
in Haskell. Specifically the formulation in use by parameterized-utils Inc. [2024],
the library providing the dependent definitions in Crucible, is via the concept of
singleton types.

6.3.1 Singleton Types

A singleton type is a type with a single valid value. This explanation assumes that
all values are not the bottom value, as it complicates the semantics, and complete
and well formed programs do not produce bottom values. Haskell’s unit type, () is
a singleton type.

Singleton types are useful because they form a bridge between types and values.
For a standard type with multiple values, knowing the type of some expression is not
enough to know the value and thus how to operate on it, or how to interpret it. A
conditional expression on some boolean for example. Knowledge that the condition
is some boolean is not enough to decide which arm of the conditional is the correct
one. A singleton type erases this distinction. Knowing the type of some expression
of a singleton type is equivalent to knowing the value of the expression, as there is
only one choice. This direction of implication, types acting like values, is the useful
feature of singleton types in this context.

Consider the most fundamental and more relevant set of singleton types, the
natural numbers. Haskell contains an infinite sequence of type level natural numbers,
equipped with a polymorphic function that produces the corresponding value level
natural, natValue :: NatRepr n —> Natural . If the inverse exists, then dependent
types are emulatable, as to produce some type B indexed by a natural number value,
one could simply produce the equivalent type level number and use a type constructor
to parameterize B with the number at the type level.

While this idea is what happens in spirit, there is a core problem. It is impossible
to correctly type the function from values to types in Haskell. Haskell requires each
expression to have a known type. Let toType be our value to type converter for
naturals. It’s clear toType 1 has a type, namely the type level 1. The same is true
for every other value level natural input. However Haskell functions must produce a

6.3. Dependently Typed Haskell 71

single type, not a different type for each input. So this is not quite enough.

The answer lies in existential types. Returning to the types as proofs frame of
mind, an existential typed value is a witness (read proof) of the existence of some
type. Critically this internal type must exist in order to form an existential, but
the resulting value does not contain the information of what the type was. At first
glance, this seems useless. Why would one want to assert the existence of a type, and
particularly if the type isn’t then known? However that lack of information is exactly
what makes existential types so useful.

Let us turn to the definition of existentials from the same library as before.

data Some (f :: k — Type)
forall x. Some (f x)

The exact details are not important, but we see that f is some type constructor,
and that to produce a Some value, f x must exist and be well typed. Thus a Some
value witnesses x as a suitable input to f. However we see that while Some is
parameterized (via type constructor) by f, it does not have a type level parameter
for x . Thus the type of x is hidden. Critically, Some f is the resulting type for all
suitable choices of parameter type x . This is a sort of type level funnel, it takes any
suitable type x and produces a uniform type Some f .

Let us return to our example with naturals. Consider the definition of the type
constructor for representations of naturals.

data NatRepr (n :: Nat)

This representation is a transparent cover of the type level natural n. However
the key insight is that NatRepr :: Nat —> Type , exactly the shape of the input to
Some . The same library provides mkNatRepr :: Natural —> Some NatRepr , which
takes a value level natural and produces an existential type level natural.

With this we are halfway to what we want. We can define our ideally dependently
typed function in terms of type level naturals, and we can produce a witness for the
appropriate type level natural given a value level natural. However this isn’t enough,
as our type constructor takes a type level natural, not a witness of the existence of
one. There is still one part missing.

It turns out that while Some erases the internal type, it doesn’t erase the internal
value. So matching on the existential produces the original f x inside. One must
be careful however, since the type rules of Haskell require that all expressions be well
typed at compile time. Thus the internal type x, the one we actually care about,
cannot escape the context of the match. The type of the match expression must
be some concrete type that is known at compile time. In general, one can use any
function that is universally qualified in its input and concrete in its output, where
the universe of inputs must be a superset of the suitable inputs to f . This pattern is
called projecting out of the existential, as it produces a value that is not wrapped by
an existential, and requires a internal function that is defined for all possible contents
of the existential. This is again a sort of type level funnel, which takes all possible
internal types x and produces a single known type. This is not terribly restrictive,
though sometimes inconvenient. The library also provides utilities like comparing for

SO W N

72 Chapter 6. Haskell

equality between existential types and type classes representing natural constraints.

A function on the naturals can be restricted to operate on some sub-interval by
bounds created with a type-level less than or equal to operator. While taking type
level arguments via NatRepr values, this encodes the exact same restriction as the
subtraction example from the type theory section 5.2.4. In the same manner to
apply the function to a natural, one first needs to provide a witness that the value
is in that interval. In the lambda calculus, this is done by some lambda abstraction
that transmutes it to the appropriate type encoding that information. In dependent
Haskell via singletons, this is achieved with natural number constraints. For example
selecting some bits from a bit vector Inc. [2023].

BVSelect :: (1 <=w, 1 <= len, idx + len <= w)
=> | (NatRepr idx)
—> !(NatRepr len)
—> ! (NatRepr w)
— I(f (BVType w))
~—> App ext f (BVType len)

Again the exact details aren’t important here, but notice the first line that contains
restrictions that the various arguments are reasonable. The input and output vectors
are non-zero in length, the length of selection and the offset together shouldn’t go
past the end of the input. These are sanity checks that traditionally happen at the
programmer’s discretion. By encoding them as type level constraints, it is impos-
sible to produce an undefined output via any combination of inputs, as unsuitable
combinations are not well typed.

Conclusions

When we asked Pooh what the opposite of an
Introduction was, he said “The what of a what?”
which didn’t help us as much as we had hoped, but
luckily Owl kept his head and told us that the
Opposite of an Introduction, my dear Pooh, was a
Contradiction; and, as he is very good at long words,
I am sure that that’s what it is.

A. A. Milne

This chapter unsurprisingly is a concise statement of the output of this thesis
along with some related information such as next steps.

The primary output of the thesis aside from this document is the pair of code
artifacts. These are the P-Code dumping plug-in for Ghdira (Ulmer [2023b]) and the
main Haskell code that forms the backend for Crucible (Ulmer [2023a]). The majority
of the work of the thesis was the formation of the Haskell code, along with learning
the many related pieces of theory.

There are a number of natural next steps for continued work on this topic. These
primarily consist of extending the backend to accommodate more sophisticated pro-
grams, along with expressing the full generality of P-Code. Examples of extensions
include tracing memory accesses with a write-log to allow for simple memory model-
ing and generalizing the VarNode handling code to represent operations which involve
multiple contiguous registers. In addition, Crucible for P-Code currently lacks an in-
terface for users to meaningfully interact with the symbolic representation, as the
standard usage of Crucible is via tools like Crux that work via source code embed-
dings. This approach is unsuitable for use on binaries that lack accompanying source
code, and thus doesn’t apply to the primary use-case of this backend. Alternative
methods could include an interface in one of the other tools built on Crucible such as
Galois’s Software Analysis Workbench.

Appendices

75

Appendix A
RISC-V Reference

This appendix is a largely complete detailing of the RISC-V ISA. It contains descrip-
tions of the core components of the ISA followed by some annotated examples.

A.1 Concrete Example Architecture

For the purpose of gaining an understanding of the inner workings of a computer
at the level that will be discussed in this work, this section provides a summary of
a concrete architecture. The architecture in question is the RISC-V architecture,
as it is simple and modern as well as being an open standard. This section can be
safely skipped by anyone who has worked with assembly before or has a general sense
of how assembly languages work. Useful alternatives to this section for motivating
and detailing assembly languages include Knuth [2005] and Abelson and Sussman
[1996] section 5.1. Both describe alternative architectures, but do so from different
standpoints. The first of the two specifically is noted, as it also includes an explanation
of the binary encoding of integers for those readers who want it.

What follows is a summary the RISC-V instruction set architecture for the base
standard. Thus it is the simplest configuration of RISC-V. The details of the modular
design of the RISC-V standard are out of the scope of this paper. The rest of this
section summarizes the relevant RISC-V standard.Foundation [2019]

The core of the RISC-V specification is the Integer Instruction Set Architecture.
This is the only part of the specification that is of interest to us, so it will be referred
to as the ISA or the RISC-V ISA from now on. In addition, we will be concerned
only with the 32 bit version. There is a 64 bit version, but it is also not of interest
for our purposes.

The ISA is composed of descriptions of a number of instructions, each of which
performs some small computation or data movement. They can be performed in
sequence to perform more complicated computations. The ISA also contains a number
of auxiliary details that will be included in this summary only when relevant.

78 Appendix A. RISC-V Reference

A.1.1 Layout

In order to understand what each instruction does, some knowledge of the parts of
the computer is necessary.

A computer conforming to the RISC-V ISA has a set of locations for storing
integers. These locations are separated into two groups. The first group are the
registers. There are 32 registers, each of which is 32 bits wide. These registers are
numbered from x0 to x31, and also have more user friendly names. The register
x0 always has the value zero for convenience. There is also a separate register, pc,
or program counter, which cannot be used for general computation and has special
meaning.

The second group is called memory. It is composed of a large number of locations
for storing 8 bit values. These locations are indexed by 32 bit numbers, and the index
of a location is called an address. One often makes reference to several locations with
neighboring indices, treating them as one larger location for storing 16 or 32 bits of
data instead. The exact details of the equivalence of between these two representa-
tions is out of scope for this background, but for a given address, the 8 bits stored
in memory for that address are the same as the least significant 8 bits of the 16 bit
data location referenced with that address. The same relationship exists between all
pairs of 8, 16, and 32 bit data widths for a given address.

A.1.2 Instruction Background

In general, a single instruction in this ISA references from one to three data registers
and zero to one fixed integer value (called an Immediate) according to the instruc-
tion. The computer performs some action according to the exact instruction and the
arguments. The exact details of that encoding are not important for this paper and
thus will not be covered.

To execute a single instruction a RISC-V computer does the following:

e Read a 32 bit value from memory at the address stored in the program counter
pc.

e Translate that value into an instruction and choices of registers for its arguments
according to the above mentioned encoding.

e Do one of the following, with a register as the destination unless otherwise
specified:

— Acquire another value from memory according to the instruction and ar-
guments.

— Perform the calculation according to the instruction and arguments.

— Write a value to memory according to the instruction and arguments.

— Write a value to a register according to the instruction and arguments.

e Increment pc by a single instruction (4, as memory is indexed in 8 bit units).

A.1. Concrete Example Architecture 79

By repeating the above cycle, a sequence of instructions encoded in 32 bit values in
memory will be executed in order, as pc will be incremented over them, one per cycle.
Thus the effects of instructions can be composed and the state of the general purpose
registers and the memory can change in complicated and semantically meaningful
ways over the course of several instructions.

One detail of the instruction encoding is the presence of immediate values. An
immediate value is a constant number that is encoded directly in the instruction. For
instance, adding 4 to a register, and storing the result in a second register is one
instruction, and the literal 4 is an immediate.

There are several formats in which instructions are encoded in binary depending
on the nature of the arguments, but in general there is a span of bits that indicates
the layout, a span that indicates the operation, and several spans for indicating the
inputs and outputs. For instance an instruction that operates on registers might have
three 5 bit fields that each indicate one of the 32 registers, two for inputs and one
for the output. An instruction that takes an immediate might have a span (often at
the end of the instruction) of 12 bits for encoding the desired constant value. The
ordering and breakdown of the fields is not terribly relevant and has been elided here,
though it is comprehensively documented in the specification.

What follows is a list of the instructions in the base ISA. These definitions are
included to give a sense of how much one instruction does in the RISC-V ISA. The
reader is expected to get a general sense, but not remember the exact semantics of
each instruction. Nuances of particular instructions will be explained in greater depth
as needed later.

80 Appendix A. RISC-V Reference

A.1.3 Integer Computational Instructions

A computational instruction in the RISC-V ISA is one that performs some simple
operation on registers or immediates and places the result in a register.

Operation | Description

ADDI Takes a source register, a destination register, and a signed 12 bit immediate.
Sets the value of the destination register to the source register plus the immedi-
ate. This instruction is useful for copying registers to other registers by adding
zero, or loading an immediate into a register by adding the zero register and the
immediate.

SLTI (Set Less than Immediate) Takes a source register, a destination register, and
a signed 12 bit immediate. Sets the value of the designation register to 1 if
the source register is less than the immediate when both are treated as signed
numbers.

SLTU (Set Less than Unsigned Immediate) Operates the same way as SLTI but does
the comparison treating both as unsigned numbers. Note that the immediate is
still sign extended, so passing a negative immediate may result in unintended

behavior.
ANDI Logical bitwise operations that take a source register, a destination register, and
ORI a 12 bit signed immediate and write the result of the respective binary operation
XORI applied to each bit of the source register and the sign extended immediate to the
destination register. Note that XORI with —1 is equivalent to a bitwise logical
NOT.
SLLI Bit shifts left and right that take a source and destination register and a 5 bit
SRLI unsigned immediate. The source register shifted appropriately by the amount
SRAI provided in the immediate. The two versions of right shifts are Logical and

Arithmetic, which differ in that Arithmetic copies the original sign bit from the
source register to the destination register.

LUI Takes a destination register and a 20 bit immediate. The immediate is placed
in the upper 20 bits of the register, and the bottom 12 bits are filled with zeros.
This instruction combined with ADDI is intended to be used to build 32 bit
constants.

AUIPC Takes a destination register and a 20 bit immediate. Forms a 32 bit constant
by taking the immediate as the upper 20 bits and filling the lower 12 bits with
zero, then adds that 32 bit number to pc as an unsigned addition and writes
that sum to the destination register. Note that pc here is the same value as the
address of this instruction in memory. This instruction, again in combination
with ADDT is used to make pc relative addresses, the usefulness of which is not
in scope for this definition.

ADD Take two source register and a destination register and act in a similar manner
SUB as their immediate counterparts, simply taking the second 32 bit source register
SLT instead of the 12 bit immediate.

SLTU
AND
OR
XOR
SLL
SRL
SRA
NOP An instruction that does nothing. This is encoded as ADDI x0, x0, 0, under-
stood as adding zero to zero and discarding the results.

A.1. Concrete Example Architecture

A.1.4 Control Transfer Instructions

A control transfer instruction alters the sequence of instructions being executed.
Specifically, it changes pc such that the next instruction to be executed is not the
immediate successor to the current instruction. Control flow instructions are used for

calling subroutines, loops, and conditional blocks.

Operation

Description

JAL

An unconditional jump. Takes an immediate and a destination register. The 20
bit immediate is sign extended to 32 bits and multiplied by two. The resulting
value is then added to pc. The address of the next sequential instruction (pc+4)
is stored in the destination register. Thus in combination to the incrementing
of pc that happens on every instruction, has the effect of making the next
instruction that is executed one at the given offset from what it would normally
be. In addition, storing the original next instruction’s location in a register
allows for returning to the original control path. Used for making subroutine
calls. CALL is shorthand for JAL with the standard choice of register.

JALR

Another unconditional jump. Takes a source and destination register and a 12
bit signed immediate. The immediate is added to the source register and pc is
written with the result. Note that this version is not relative to pc. Once again,
the original next instruction location is written to the destination register. Used
for calls with targets not known at compile time and returning from subroutines
by using the caller location saved in JAL and discarding the jump location by
setting the destination register to x0. RET is short for return to the standard
return address register, and discard the current location by using x0 for the link
register.

BEQ
BNE
BLT
BLTU
BGE
BGEU

Conditional branches. Take a 12 bit signed immediate and two source registers.
Perform some function from the two registers to a boolean, and if the value is
true, then it performs a pc-relative jump with the immediate as the offset. If
the function evaluates to false on the two registers, then the next instruction is
executed as normal. The functions for each instruction are

e BEQ checks that the two registers are equal.
e BNE checks that the two registers are not equal.
e BLT checks that the first register is less than the second.

e BLTU does the same, but treating the registers as unsigned values.

BGE checks that the first register is greater or equal to the second.

e BGEU does the same, but treating the registers as unsigned values.

82 Appendix A. RISC-V Reference

A.1.5 Load and Store Instructions

A load or store instruction is an instruction that moves data between registers and
memory.

Operation | Description

LOAD Takes a source and destination register and a signed 12 bit immediate. Adds the
source register and the immediate and treats the sum as an address in memory.
Depending on the variant, 8, 16, or 32 bits in memory at that address are written
to the destination register’s least significant bits. The details of loading different
sized values, and interpreting them as either signed or unsigned is not critical
to our intuition, and has thus been excluded.

STORE Takes two source register and a 12 bit signed immediate. Adds the first source
register and the immediate, treats the sum as an address in memory, and writes
the value of the second source register to that location in memory. Again, there
are variants for different widths of data, 8, 16, and 32 bits specifically. In the
case where not all of the register is copied, the least significant bits of the first
register are copied to memory.

A.1.6 Memory Ordering, Environment Calls, Breakpoints,
and Hints

All of the above are included in the base RISC-V specification, but are not relevant
to our purposes and are thus not included here.

A.2 Concrete RISC-V Assembly Examples

In order to build familiarity with the concepts of assembly and instructions, a few
examples are included here. A reader unfamiliar with assembly, or programming in
general, is encouraged to read them carefully and ideally step through them in one’s
mind for a simple case or two. They are unoptimized, but are idiomatic and thus serve
as good introductory examples. I will be using the standard RISC-V assembly syntax,
where the destination register comes first, and the sources come after it, though this
decision is arbitrary. The remainder of any line after a hash (#) is a comment and
will be ignored. They are simply included for the purpose of explanation.

0 O Ui Wi =

A.2. Concrete RISC-V Assembly Examples 83

First consider a function that takes a non-negative whole number n and returns
the n-th Fibonacci number. A natural if not fast way to calculate that is to simply
follow the rule of each number being the sum of the previous two until we reach the
index we were asked for:

Listing A.1: Fibonacci

Let’s assume we are given the index in register a0, and the zeroth
and first Fibonacci numbers are 0 and 1 respectively
fibonacci:
mv t0, x0
mv t1, 1 # Set up initial values
loop:
beqz a0, done # If we are at the indicated indexr, we can Sstop
iterating
add t2, t1, t0 # t2 is our next value
mv t0, t1
mv t1, t2 # Shift over our saved elements so we can do it again
if we meed to
addi a0, a0, —1 # Decrement a0, we have taken one step
j loop # Take us back to the loop label, don’t save
infomation to return here
done:
mv a0, t0 # The caller expects the answer in the a0 register
ret # Return to caller

Note the core idea is here is do the most basic step in a generic manner, here lines 9
through 11, and surround them with structure such that they can be repeated (lines
7,13, and 14).

Now consider a slightly more complicated example: primality testing. Our method
here will be to test if pairs of numbers multiply to our given number n, and minimize
the number of pairs we have to test. We know that multiplication is commutative
and that for positive inputs, it is monotonically increasing in both operands. That
means that we only need to test one of each a-b and b-a pair, and that if ever a - b is
greater than n, we can stop this line of tests and start another. So we will try pairs
a-b, and increase b until either we find a match or it becomes too big. If it is too big,
we will increase a, and start testing again with b initially equal to a. We can stop
incrementing a if it is equal to n. At that point, we know that the input is prime.
Note that this is an extremely inefficient algorithm and implementation.

0 O Ui Wi -

84 Appendix A. RISC-V Reference

Listing A.2: Primality Test

Our number to test is in register a0, and the caller expects the
result, 1 i¢f it is prime, 0 otherwise, in a0. We will want to call
other things, so we mneed to save a few numbers out of the way. We
make space for them on the stack, a place in memory for storing

temporary values.

isPrime:

addi sp, sp, —16 # Make space for 4 4 byte wvalues
li t0, 2 # Initially a = 2

outer_loop:

mv t1, t0

inner_loop:

st ra, (sp)

st t0, 4(sp)

st tl, 8(sp)

st a0, 12(sp) # Registers that might get clobbered are safely
saved

mv a0, t0
mv al, tl
call multiply

This is another function we are calling out to. It takes two numbers
in a0 and al and returns their product in a0. It’s definition has

been elided for brevity. In most real computers, there would be an

instruction for this, but the most minimal RISC-V set does not have
one.

mv t2, a0 # This is our product to test

Id ra, (sp)

1d t0, 4(sp)

1d t1, 8(sp)

ld a0, 12(sp) # Restore our saved values

beq a0, t2, found # Our product matches

bgt t3, a0, too_big # Our product is too large

addi t1, t1, 1 # Need to keep going, increment b and try again
j inner_loop

found: # We found a counter example

mv al, x0 # Not prime

addi sp, sp, 12 # De—allocate the space we allocated

ret

too_big: # Our product was too big, are there more to test?
beq t0, a0, done # a =mn, we are done

addi t0, t0, 1
j outer_loop

done: # Failed to find any counterexamples
mv 1, a0 # Is prime

addi sp, 12, sp # De—allocate the space we allocated
ret

Works Cited

H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, MA, USA, 2nd edition, 1996. ISBN 0262011530.

N. S. Agency. P-Code Operation Reference, 2019.

H. Barendregt. Introduction to generalized type systems. Journal of Functional
Programming, 1(2):125-154, 1991. doi: 10.1017/S0956796800020025.

L. Barrett, 2021. URL https://galois.com/blog/2021/10/under-constrained-
symbolic-execution-with-crucible/.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13(4):451-490, oct 1991. ISSN 0164-0925. doi: 10.
1145/115372.115320. URL https://doi.org/10.1145/115372.115320.

N. S. A. R. Directorate, 2023. URL https://ghidra-sre.org.

R. Dockins, A. Foltzer, J. Hendrix, B. Huffman, D. McNamee, and A. Tomb. Con-
structing semantic models of programs with the software analysis workbench. vol-
ume 9971, pages 56-72, 07 2016. ISBN 978-3-319-48868-4. doi: 10.1007/978-3-319-
48869-1_5.

R.-V. Foundation. The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
2019.

HackOvert. Ghidrasnippets. https://github.com/HackOvert/GhidraSnippets#
dumping-raw-pcode, 2023.

S. B. Horwitz. Lecture Notes. URL https://pages.cs.wisc.edu/~horwitz/CS704-
NOTES/1.LAMBDA-CALCULUS.html.

W. Howard. The formulae-as-types notion of construction. 1980.

G. Inc. Crucible, 2023. URL https://github.com/GaloisInc/crucible/blob/
0d26eb423fa613ccf0410a84£5c72a7d7473b6be/crucible/src/Lang/Crucible/
CFG/Expr.hs/#L641.

G. Inc. parameterized-utils, 2024. URL https://hackage.haskell.org/package/
parameterized-utils.

https://galois.com/blog/2021/10/under-constrained-symbolic-execution-with-crucible/
https://galois.com/blog/2021/10/under-constrained-symbolic-execution-with-crucible/
https://doi.org/10.1145/115372.115320
https://ghidra-sre.org
https://github.com/HackOvert/GhidraSnippets#dumping-raw-pcode
https://github.com/HackOvert/GhidraSnippets#dumping-raw-pcode
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/1.LAMBDA-CALCULUS.html
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/1.LAMBDA-CALCULUS.html
https://github.com/GaloisInc/crucible/blob/0d26eb423fa613ccf0410a84f5c72a7d7473b6be/crucible/src/Lang/Crucible/CFG/Expr.hs/#L641
https://github.com/GaloisInc/crucible/blob/0d26eb423fa613ccf0410a84f5c72a7d7473b6be/crucible/src/Lang/Crucible/CFG/Expr.hs/#L641
https://github.com/GaloisInc/crucible/blob/0d26eb423fa613ccf0410a84f5c72a7d7473b6be/crucible/src/Lang/Crucible/CFG/Expr.hs/#L641
https://hackage.haskell.org/package/parameterized-utils
https://hackage.haskell.org/package/parameterized-utils

86 Works Cited

D. E. Knuth. The art of computer programming. Volume 1, fascicle 1, MMIX A RISC
computer for the new millennium. Addison-Wesley, Upper Saddle River, NJ, 1st
edition edition, 2005. ISBN 0-321-63736-4.

S. Messick. Limits in category theory. 01 2007.

P. S. Mulry. Monads in semantics. Flectronic Notes in Theoretical Computer Sci-
ence, 14:275-286, 1998. ISSN 1571-0661. doi: https://doi.org/10.1016/S1571-
0661(05)80241-5. URL https://www.sciencedirect.com/science/article/
pii/S1571066105802415. US-Brazil Joint Workshops on the Formal Foundations
of Software Systems.

N. Naus, F. Verbeek, D. Walker, and B. Ravindran. A formal semantics for p-code. In
A. Lal and S. Tonetta, editors, Verified Software. Theories, Tools and Experiments.,
pages 111-128, Cham, 2023. Springer International Publishing. ISBN 978-3-031-
25803-9.

niconaus. Pcode-dump. https://github.com/niconaus/PCode-Dump, 2022.

M. I. Schwartzback. Lecture notes on static analysis. http://www.itu.dk/people/
brabrand/UFPE/Data-Flow-Analysis/static.pdf.

T. Ulmer. Crucible-pcode. https://github.com/TCCQ/crucible-pcode, 2023a.
T. Ulmer. Pcode-dump. https://github.com/tccq/PCode-Dump, 2023b.
Various. Haskell monad laws. URL https://wiki.haskell.org/Monad_laws.

K. N. W. Kahan. https://www.netlib.org/fdlibm/e_sqrt.c, 1986.

https://www.sciencedirect.com/science/article/pii/S1571066105802415
https://www.sciencedirect.com/science/article/pii/S1571066105802415
https://github.com/niconaus/PCode-Dump
http://www.itu.dk/people/brabrand/UFPE/Data-Flow-Analysis/static.pdf
http://www.itu.dk/people/brabrand/UFPE/Data-Flow-Analysis/static.pdf
https://github.com/TCCQ/crucible-pcode
https://github.com/tccq/PCode-Dump
https://wiki.haskell.org/Monad_laws
https://www.netlib.org/fdlibm/e_sqrt.c

	Introduction
	Layout of this Document

	Chapter 1: Prerequisites
	Computation Model
	Undefined Behavior
	Register Unit
	Arithmetic Unit
	Memory Unit
	State Machine
	Examples

	Assembly
	Imperative Languages
	Functional Languages
	Categories

	Chapter 2: P-Code
	Technical Details
	Address Spaces and VarNodes
	Instructions

	Pitfalls
	High and Low P-Code
	Specification

	Extracting P-Code
	Example Translation

	Chapter 3: Symbolic Analysis
	Atoms, Composition, and Straightline Computations
	Eliminating Mutability
	Atoms
	Composition of Atoms
	Straightline Computations and Side Effects

	Control Flow
	Conditionals and Subroutines
	Attempting Iteration

	Chapter 4: Our Work
	The Lay of the Land
	What to Connect
	The Artifact
	Function Arguments, Data Shape, and Types
	Control Flow
	Creating Crucible CFGs
	Reconstructing CFGs
	Block Arguments vs SSA
	Memory Issues
	Final Artifact

	Chapter 5: Type Theory
	Simply Typed Lambda Calculus
	Lambda Cube
	Universal Qualification
	Polymorphism
	Type Constructors
	Dependent Types
	Systems of the Lambda Cube

	Types and Proofs

	Chapter 6: Haskell
	Types in Haskell
	Types as a Category

	Pure Functional Programming
	Why Monads Matter

	Dependently Typed Haskell
	Singleton Types

	Conclusions
	Appendices
	Appendix A: RISC-V Reference
	Concrete Example Architecture
	Layout
	Instruction Background
	Integer Computational Instructions
	Control Transfer Instructions
	Load and Store Instructions
	Memory Ordering, Environment Calls, Breakpoints, and Hints

	Concrete RISC-V Assembly Examples

	Works Cited

